

ХОХЛОВ ЮРИЙ СЕРГЕЕВИЧ

БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ РОДИТЕЛЬСКИХ ФОРМ И ГИБРИДОВ F_1 LAVANDULA X INTERMEDIA EMERIC EX LOISEL

4.1.2. Селекция, семеноводство и биотехнология растений (сельскохозяйственные науки)

Автореферат

Диссертации на соискание ученой степени Кандидата сельскохозяйственных наук Диссертационная работа выполнена в Федеральном государственном бюджетном учреждении науки «Ордена Красного Трудового Знамени Никитский ботанический сад – Национальный научный цент РАН» (ФГБУН «НБС-ННЦ РАН»)

Научный руководитель: Шевчук Оксана Михайловна

доктор биологических наук, главный сотрудник лаборатории ароматических и лекарственных растений, заведующая отделом технических культур и биологически активных веществ заместитель директора по науке ФГБУН «Ордена Трудового Красного Знамени Никитский ботанический сад — Национальный научный центр РАН».

Официальные оппоненты:

Белоус Оксана Геннадьевна

доктор биологических Федеральное наук, доцент, бюджетное государственное учреждение науки «Федеральный исследовательский центр «Субтропический научный центр Российской академии главный научный сотрудник, заведующая лабораторией физиологии и биохимии растений.

Беспалько Алеся Владимировна

кандидат сельскохозяйственных наук, Федеральное государственное бюджетное научное учреждение «Федеральный научный центр овощеводства». старший научный сотрудник лаборатории зеленных, пряновкусовых и цветочных культур, заведующая сектором цветочных культур.

Ведущая организация:

Федеральное государственное бюджетное научное учреждение «Федеральный научный центр «Всероссийский научно-исследовательский институт масличных культур имени В.С. Пустовойта».

Защита состоится «<u>25</u> » <u>декабря</u> 2025 года в 13:00 часов на заседании диссертационного совета 24.1.199.02 при Федеральном государственном бюджетном учреждении науки «Ордена Красного Трудового Знамени Никитский ботанический сад — Национальный научный цент РАН» по адресу: 2988648, Российская Федерация, Республика Крым, г. Ялта, пгт Никита, спуск Никитский, 52. E-mail: dissovet.nbs@yandex.ru

С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУН «НБС-ННЦ» по адресу: 2988648, Российская Федерация, Республика Крым, г. Ялта, пгт. Никита, спуск Никитский, 52; адрес сайта http://obr.nbgnsc.ru

Автореферат разослан «<u>24</u> » <u>10</u> 2025 года

Ученый секретарь диссертационного совета, кандидат биологических наук

Зыкова Вера Константиновна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Эфиромасличная отрасль является одной из самых прибыльных и быстроразвивающихся сегментов мирового агропромышленного комплекса. Мировой ассортимент эфирных масел насчитывает 180 наименований. Перспективной эфиромасличной культурой является лавандин (*Lavandula* × *intermedia* Emeric ex Loisel), доля которого в общем производстве эфирных масел составляет 4-5%, с годовым валовым сбором эфирного масла около 1200 тонн. Мировой сортимент промышленно используемых сортов представлен в основном клонами французской селекции.

Селекция лавандина обусловлена растущим спросом на эфирные масла в различных отраслях - от парфюмерии и косметологии до медицины и пищевой промышленности. Улучшение качества эфирного масла лавандина путем снижения содержания нежелательных компонентов, таких как камфора, является важной задачей селекции. Учитывая современные методы селекции, такие как межвидовая гибридизация, цитология и цитометрия, комплексное изучение основных хозяйственно-ценных признаков, адаптация к почвенно-климатическим условиям юга России, выделение перспективных гибридных форм и создание новых высокоурожайных сортов позволят значительно расширить возможности использования лавандина в различных областях.

В условиях глобализации и увеличения международной конкуренции важно не только сохранить, но и улучшить конкурентоспособность отечественных сортов, чтобы обеспечить сырьем отечественную парфюмерно-косметическую, фармацевтическую и пищевую промышленность в рамках политики импортозамещения.

Степень разработанности темы. Анализ литературных источников отечественных и зарубежных ученых свидетельствует о большом научном интересе к данной культуре, разнообразии научных направлений ее исследования и важностью селекционного улучшения. Популяционной изменчивостью естественных гибридов занимались во Франции. Работы ряда ученых (Upson, at al., 2004) указывают на высокую изменчивость морфологических признаков и химического состава масла лавандина, на чем основывается отбор форм из естественных популяций.

Изучение и селекционное улучшение лаванды и лавандина в России связано с именами П.А. Нестеренко (1947), В.И. Машанова (1968), В.Д. Работягова (1986). В.Д. Работяговым (1983) в целях совершенствования селекции эфирномасличных культур разработана модель продуктивности лаванды. Морфогенез и биологию цветения у лавандина изучала Е.Г. Шоферистова (1977). Биохимии сырья и эфирного масла лавандина посвящены работы В.Д. Работягова и Ю.А. Акимова (1990), Палий А.Е (2016). Изучению особенностей развития лавандина в различных природно-климатических условиях посвящены работы Т.Г. Мухортовой (1974) и Л.В. Свиденко (2001).

В условиях Южного берега Крыма лаванда узколистная (Lavandula angustifolia Mill.) и лавандин (Lavandula \times intermedia Emeric ex Loisel) являются ценными эфиромасличными культурами, однако их потенциал в промышленном производстве раскрыт не полностью из-за недостаточной изученности биологических особенностей родительских форм и гибридов F_1 лавандина, а также их адаптивных и продуктивных свойств.

Цель работы — на основе комплексного изучения особенностей развития и оценки основных свойств исходных форм и гибридов лаванды и лавандина выделить источники хозяйственно ценных признаков и создать новые адаптивные сорта с повышенной продуктивностью и качеством эфирного масла.

Задачи исследований:

1. Обосновать выбор исходных родительских форм и оценить их комбинационную способность.

- 2. Разработать схему и провести реципрокные скрещивания родительских форм.
- 3. Провести комплексное изучение (фенология, морфологические параметры, семенная продуктивность, урожайность, массовая доля эфирного масла, качественный и количественный состав эфирного масла, морозоустойчивость) исходных форм и гибридов лавандина F₁.
 - 4. Провести цитологический и цитометрический анализ родительских форм и гибридов F₁.
- 5. Определить лучшие комбинации родительских пар для скрещивания как источников ценных признаков.
- 6. Выделить исходные формы и перспективные гибриды F₁ лавандина с комплексом хозяйственно-ценных признаков для передачи в Госсорткомиссию.

Научная новизна полученных результатов.

Дана комплексная оценка биологических особенностей межвидовых гибридов лавандина F_1 .

Оценено влияние исходных родительских форм на качественные и количественные признаки продуктивности, валовый сбор, массовую долю и качество эфирного масла у генотипов поколения F_1 , полученных методом отдаленной гибридизации, в зависимости от комбинации скрещивания.

Выделен селекционный материал, влияющий на устойчивость к абиотическим факторам.

Теоретическое и практическое значение полученных результатов.

Обоснован выбор исходных родительских форм и подтверждена возможность межвидовой гибридизации тетраплоидных фертильных лавандинов с образцами лаванды узколистной.

Проведено комплексное изучение (фенология, морфологические параметры, урожайность, массовая доля эфирного масла, качественный и количественный состав эфирного масла, морозоустойчивость) 12 гибридных форм лавандина F_1 , полученных в результате реципрокных скрещиваний.

Установлена плоидность методами цитологического и цитометрического анализа родительских и гибридной форм.

Доказано, что родительские формы лаванды являются источниками ценных селекционных признаков: высокое содержание линалиацетата, морозоустойчивости, продуктивности и раннеспелости, что стало основанием для регистрации их как сортов 'Вайлет', 'Прима Южная' и 'Рекорд Никитский' (включены в Реестр РФ и запатентованы).

Подготовлена научно-техническая документация для передачи в Госсортокомиссию перспективного гибрида лавандина, с высокой продуктивностью, валовым сбором эфирного масла и качеством эфирного масла для передачи на Государственное сортоиспытание с целью включения в Реестр селекционных достижений РФ.

Методология и методы исследования. Основой исследований являлись методические рекомендации отечественных и зарубежных ученых в области селекции и сортоизучения эфиромасличных и лекарственных культур. Применены фенологические наблюдения, методы лабораторного и полевого эксперимента. Статистическую обработку полученных данных проводили с помощью программ Microsoft Exel 2016 и Statistica 10.

Основные положения, выносимые на защиту:

1. Комплексная оценка признаков родительских гибридных форм лаванды узколистной и лавандинов (с тетраплоидным набор хромосом) с повышенными хозяйственно-ценными признаками для осуществления селекционной работы, направленной на выделение наиболее перспективных генотипов лавандина.

- 2. Комплексный подход в изучении комбинаций скрещивания по определённым хозяйственно-ценным признакам.
- 3. Совершенствование методов оценки селекционного фонда лаванды узколистной и лавандина с использованием методов математического анализа.
- 4. Увеличение уровня экономических показателей благодаря использованию в производстве и селекции новых сортов лаванды узколистной: 'Вайлет', 'Прима Южная', 'Рекорд Никитский'.

Личный вклад соискателя состоит в непосредственном участии в работе на всех этапах проведения исследования. Автором изучена научная литература обоснованы направления исследований, освоены методики, выполнены полевые и лабораторные исследования, проведена статистическая обработка данных, проанализированы полученные результаты, сформулированы выводы и написана диссертационная работа. Совместно с научным руководителем выбраны тема, объекты и методы исследования, проведено теоретическое обоснование данных. Результаты исследований опубликованы автором самостоятельно и в соавторстве.

Степень достоверности. Подтверждается результатами оценки данных, полученных автором, проанализированных и обобщенных с использованием статистических методов, выводами и рекомендациями производству, а также публикациями, отражающими основные результаты диссертационных исследований.

Апробация результатов диссертации. Основные положения и материалы диссертационной работы были представлены в виде ежегодных отчетов на заседании отдела эфиромасличных и лекарственных культур ФГБУН «НБС-ННЦ», а также в виде научных конференциях: Международной научно-практической конференции «Ароматические и лекарственные растения: интродукция, селекция, агротехника, биологически активные вещества, влияние на человека» (Ялта, 2021); Международной научно-исследовательской конференции по продовольственной безопасности и сельскому хозяйству (Ялта, 2021); Всероссийской научно-практической конференции «Тропические и субтропические растения открытого и защищенного грунта» (Ялта, 2022); Международной научно-практической конференции «Ароматические, лекарственные и овощные растения: интродукция, селекция, агротехника, биологически активные вещества, влияние на человека» (Ялта, 2023).

Публикации. Основные положения и результаты диссертации отражены в 18 работах, в том числе 1 в рецензируемых журналах, рекомендованных ВАК РФ по специальности 4.1.2. Селекция, семеноводство и биотехнология растений (сельскохозяйственные науки), 5 статей в журналах, входящем в международные базы данных и системы цитирования (WoS и Scopus), 3 патента, 5 в иных научных журналах и 4 в материалах международных конференций.

Объем и структура диссертации. Диссертация изложена на 167 страницах компьютерного текста. Состоит из введения, обзора литературы, условий, материала и методики проведения исследований, экспериментальной части, заключения, рекомендаций для селекции и производства, списка использованной литературы и приложений. Содержит 28 таблиц, 39 рисунков и 3 приложения. Список литературы включает 154 источника, в том числе 82 на иностранных языках.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

ГЛАВА 1 СИСТЕМАТИКА, РАСПРОСТРАНЕНИЕ И ХОЗЯЙСТВЕННОЕ ЗНАЧЕНИЕ ВИДОВ РОДА *LAVANDA* L.

В главе приводятся сведения о систематическом положении и происхождении лаванды узколистной и лавандина, морфологических и биологических особенностях. Приведены данные о химическом составе эфирного масла и лекарственных свойствах лавандина и его исходных видов. Проанализирован и обобщен материал по селекции лаванды узколистной и лавандина в России и зарубежном и использования эфирных масел в различных отраслях промышленности.

ГЛАВА 2 ОБЪЕКТЫ, УСЛОВИЯ И МЕТОДЫ ИССЛЕДОВАНИЙ

Объектами исследования являлись исходные родительские формы: образцы Lavandula angustifolia Mill. № 70116, № 32812, № 8812 и тетраплоидные фертильные формы Lavandula x intermedia Emeric ex Loisel №11 и №48, полученные методом межвидовой гибридизации между лавандой широколистной и лавандой узколистной. Между указанными родительскими формами были проведены прямые и обратные скрещивания для получения гибридов F_1 лавандина. В качестве контроля при изучении полученных гибридов был выбран районированный сорт лавандина 'Рабат' селекции Никитского ботанического сада.

Для создания аллотриплоидных гибридов F_1 применяли метод искусственной гибридизации (Работягов, Акимов, 1986; Шоферистова и др., 1977). При проведении гибридизации между родительскими формами испытали 12 реципрокных комбинации, было получено 424 гибридных растения, комбинациях скрещивания: L. angustifolia №70112 × L. × intermedia №11 - 31 растение; L. × intermedia №11 x L. angustifolia №70112 - 18 растений; L. angustifolia №32816 x L. × intermedia №11 - 54 растения; L. х intermtdia №11 x L. angustifolia №32816 - 28 растений; L. angustifolia №8812 x L. х intermtdia №11 - 40 растений; L. × intermedia №11 x L. angustifolia №8812 - 36 растений; L. аngustifolia №70116 x L. × intermedia №48 - 43 растений; L. × intermedia №48 x L. angustifolia №70116м - 33 растения; L. angustifolia №32812 x L. × intermedia №48 - 56 растений; L. х intermtdia №48 x L. angustifolia №8812 x L. х intermtdia №48 x L. angustifolia №8812 x L. х intermtdia №48 - 40 растений; L. × intermedia №48 x L. angustifolia №8812 - 18 растений.

Полевые опыты проводили в 2020-2023 гг. на участке лаборатории ароматических и лекарственных растений Никитского ботанического сада, возраст растений — 4 года. Фенологические наблюдения проводили по общепринятой методике (Бейдеман, 1974) с некоторыми изменениями и дополнениями применительно к культуре (отмечали только следующие основные фенологические фазы развития: начало цветения, массовое цветение, конец цветения). Учет урожая надземной массы проводили в фазу массового цветения растений по методике полевых опытов (Доспехов, 1973). Продуктивность соцветий и число цветоносов определяли классическими методами (Работягов, Машанов 1999; Шевчук, Исиков, Логвиненко, 2022).

Содержание эфирного масла определяли в свежесобранном цветочном сырье в фазу массового цветения растений методом гидродистилляции на аппаратах Гинзберга (Ермаков, 1962). Компонентный состав эфирного масла исследовали методом высокоэффективной газо-жидкостной хроматографии на хроматографе AgilentTechnology 6890N. Компонентный состав летучих веществ определяли с помощью хроматографа Agilent Technology 6890 с масс-спектрометрическим детектором 5973. Идентификация выполнялась на основе сравнения полученных масс-спектров с данными комбинированной библиотеки NIST05-WILEY2007 (около 500000

масс-спектров). Индексы удерживания компонентов рассчитывали по результатам контрольных анализов эфирных масел с набором нормальных алканов.

Подсчет хромосом у исходных видов и лавандинов проводились по методике подсчёта хромосом Паушевой (1988). Уровень плоидности и относительное содержание ДНК определяли по методике исследования объектов с помощью проточной цитометрии (Скапцов и др., 2020).

Степень морозоустойчивости изучали в лабораторных условиях методом прямого промораживания побегов в климатической камере TTC 256 Memmert (Germany). Степень потемнения (побурения) тканей, оценивали визуально по шести балльной шкале (Яблонский и др., 1984). Рассчитывали индекс повреждения с учетом морфофизиологической значимости различных тканей (Бублик и др., 2013).

Величину истинного и конкурсного гетерозиса определяли по методике учета и оценки гетерозиса у растений Омарова. (1975). Представлены данные о погодных условиях за период исследований в сравнении с среднемноголетними показателями.

Статистическую обработку данных проводили при помощи компьютерных программ Excel 2016, Statistica 10.

ГЛАВА З БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ РОДИТЕЛЬСКИХ ФОРМ L. ANGUSTIFOLIA И L. × INTERMEDIA

3.1 Морфологических параметры исходных форм

Для определения сроков наступления фаз развития родительских форм проведены фенологические наблюдения (таблица 1). Наиболее ранним началом вегетации характеризуется форма L. × intermedia № 11: вторая декада апреля. Образцы L. angustifolia № 32812, № 70116, № 8812 начинают вегетацию значительно позже, в первой декаде мая. Ранее цветение также характерно для L. × intermedia № 11 (середина июня). Количество дней от начала вегетации до конца цветения у формы № 48 составляет 103 дня, у № 11 — 107 дней. Большинство форм L. angustifolia № 70116, № 8812 начинает цветение в последнюю декаду июня. Цикл развития от вегетации до конца цветения у формы № 32812 составляет 58 дней, у № 70116 — 62 дня, у № 8812 — 65 дней. По продолжительности цветения наиболее длительным периодом цветения характеризуются тетраплоидные формы L. х intermedia № 48 (около 40-45 дней) и L. × intermedia № 11 (около 40 дней). Формы L. angustifolia, особенно № 70116 и № 32812, имеют очень короткий и дружный период цветения (около 15-20 дней), для формы № 32812 число дней составило 20, для № 70116 — 16 дней, для № 8812 — 17 дней.

Таблица 1 – Фенологические фазы исходных форм, 2020-2023 гг.

Родительская форма	Начало	Начало	Массовое	Конец
• •	вегетации	цветения	цветение	цветения
Lavandula angustifolia № 32812	08.05-12.05	20.06-29.06	28.06-05.07	02.07-11.07
Lavandula angustifolia № 70116	02.05-09.05	24.06-01.07	30.06-06.07	04.07-10.07
Lavandula angustifolia № 8812	01.05-07.05	26.06-03.07	30.06-08.07	04.07-12.07
Lavandula x intermedia № 48	19.04-22.04	20.06-26.06	01.07-09.07	31.07-05.08
<i>Lavandula</i> x <i>intermedia</i> № 11	12.04-17.04	15.06-20.06	30.06-12.07	28.07-02.08

Анализ исходных по высоте и диаметру растения позволил выявить наличие двух групп родительских форм по показателям габитуса куста (таблица 2). К группе компактных генотипов отнесены все формы L. angustifolia № 32812, № 70116, № 8812. Высота растений варьировала от 53 ± 0.8 см (№ 8812) до 65 ± 0.9 см (№ 32812), что в среднем на 30-40 % ниже,

чем у форм L. × intermedia. Диаметр куста у данной группы также был меньше и составлял от $50\pm1,1\,$ см до $62\pm1,0\,$ см. Генотип №8812 был определен как самый низкорослый и компактный, в то время как №32812 - как наиболее рослый и мощный внутри этой группы. К группе высокорослых генотипов, отнесены все исходные формы L. × intermedia № 11 и № 48. Средняя высота растений в этой группе варьирует от $97\pm3,2\,$ см (№11) до $99\pm2,1\,$ см (№ 48). Эти формы продемонстрировали наибольшую высоту, превосходя все формы L. angustifolia. Диаметр куста у всех представителей этой группы был схожим и находился в диапазоне $86-95\,$ см.

Таблица 2 – Габитус растений исходных форм, 2020-2023 гг.

Родительская форма	Высота растения, см	Диаметр куста, см
Lavandula angustifolia № 32812	65±0,9	57±1,6
Lavandula angustifolia № 70116	57±0,9	62±1,0
Lavandula angustifolia № 8812	53±0,8	50±1,1
Lavandula x intermedia № 48	99±2,1	86±1,4
Lavandula x intermedia № 11	97±3,2	86±1,4

Для выявления высокопродуктивных родительских форм проведена сравнительная оценка по продуктивности соцветий и числу цветоносов на растении (таблица 3).

Выявлено, что масса цветка у родительских форм характеризуется высокой вариабельностью: у формы № 48 масса одного цветка колеблется в пределах от 8,0 до 11,0 мг, у формы № 11 масса цветка доходит до 25,7 мг, у форм L. angustifolia - от 4,0 до 5,0 мг. У формы № 11 соцветие имеет наибольший показатель массы, она составляет 1,92 г. По числу цветоносов на одном растении лидируют родительские формы L. × intermedia № 11 — 1306 шт. и № 48 — 1100 шт., в сравнении с L. angustifolia — 400-470 шт.

Таблица 3 – Продуктивность соцветий и число цветоносов исходных форм. 2020-2023 гг.

Признак	№ 32812	№ 70116	№ 8812	Nº 48	№ 11
Длина соцветия, см	4,5±1,6	5,8±1,1	4,6±0,7	6,9±1,2	6,8±1,4
Число мутовок в соцветии, шт.	7,0±0,0	6,7±0,7	7,9±1,2	6,8±0,4	8,4±0,5
Число цветков во 2-й мутовке, шт.	16,3±5,2	14,6±2,9	12,3±4,1	19,3±3,6	21,9±4,7
Число цветков в соцветии, шт.	95,3±18,6	106,2±22,3	89,3±19,7	111,7±21,2	146,2±27,2
Масса цветка, мг	4,2±1,7	5,5±1,3	4,6±0,9	11,2±2,1	25,7±4,1
Масса соцветия, г	0,49±0,12	0,58±0,16	0,41±0,23	1,18±0,25	1,92±0,39
Число цветоносов на растении, шт.	430±27,4	476±11,8	401,6±22,2	11005±113	1305±97,3

Сравнительное изучение содержания эфирного масла у исходных форм показало (таблица 4), что высокими значениями характеризуется форма L. х *intermedia* № 11 - 8,30%. У лавандина № 48 среднее содержание за годы исследований составило 5,91%. К высокопродуктивной форме по изучаемому признаку можно отнести лаванду узколистную № 70116, у которой зафиксирован уровень накопления масла 5,92%. К средне продуктивному относится образец лаванды № 32812, с содержанием эфирного масла 4,85%. Средний показатель по годам для формы № 8812 составил 3,79%, эту форма является низкопродуктивной.

		-	1 1 /		,
Родительская форма	2020	2021	2022	2023	Среднее
Lavandula angustifolia № 8812	2,91	4,21	4,91	3,51	3,79
Lavandula angustifolia № 70116	6,09	5,85	5,67	5,94	5,92
Lavandula angustifolia № 32812	4,71	4,64	5,52	4,67	4,85
Lavandula x intermedia № 48	5,12	5,56	5,82	6,52	5,91
Lavandula x intermedia № 11	7,65	7,22	7,41	8,93	8,30

Таблица 4 – Содержание эфирного масла у исходных форм, % на а.с.в., 2020-2023 гг.

В результате анализа по содержанию эфирного масла, урожайности, валовому сбору эфирного масла установлено (таблица 5), что к группе с высокой продуктивностью относятся две формы $L. \times intermedia$, которые значительно превосходят остальные по главному показателю — валовому сбору масла. L. angustifolia \mathbb{N} 11 характеризуется самым большим валовым сбором эфирного масла в 256,9 кг/га. Значения признаков у формы \mathbb{N} 18 показывают стабильно ровные результаты за годы исследования по валовому сбору (191,2 кг/га), урожайностью 87,9 ц/га и средним содержанием эфирного масла (2,2%).

Ко второй группе, с низкими показателями продуктивности, относятся формы L. angustifolia № 32812, № 8812. Самыми низкими показателями по продуктивности, характеризуется форма № 8812 (валовой сбор масла 66,8 кг/га, урожайность надземной массы 45,3 ц/га, масличность 1,5%).

Таблица 5 – Содержание эфирного масла, урожайность, сбор эфирного масла, 2020-2023 гг.

			2023 II.						
Паууоуу	Гол		Форма						
Признак	Год	№ 32812	№ 70116	№ 8812	№ 11	№ 48			
Massanag	2020	1,6	1,9	1,4	2,2	2,1			
Массовая	2021	1,8	1,8	1,5	2,7	2,4			
доля	2022	1,5	1,9	1,6	2,4	2			
эфирного масла, %	2023	1,6	2	1,4	2,1	2,2			
Macha, 70	Среднее	1,63	1,9	1,5	2,8	2,2			
	2020	50,4	60,2	43,2	126,5	81,6			
Урожайность	2021	57,1	70,6	45,6	126,5	90,2			
надземной	2022	54,3	65,4	47,8	113,4	94,5			
массы, ц/га	2023	53,8	68,2	44,6	121,8	85,6			
	Среднее	53,9	66,1	45,3	116,4	87,9			
Валовой	2020	80,6	114,4	60,5	249,5	188,31			
сбор	2021	102,9	130,6	68,4	253,0	171,4			
эфирного	2022	81,5	124,3	76,5	255,8	216,5			
масла, кг/га	2023	86,1	136,4	62,4	267,7	189,0			
Macha, Ki/ia	Среднее	87	126,4	66,8	256,9	191,2			

Изучение морозоустойчивости исходных родительских форм показало, что по степени повреждения побегов, критическим для большинства форм является температура -25°C (таблица 6). При этой температуре были зафиксированы сильные, зачастую необратимые повреждения: наиболее уязвимой тканью оказался камбий, степень повреждения которого у форм № 70116, № 8812 и № 48 достигла максимального значения — 5 баллов. Повреждения сопровождались отслоением коры и глубоким потемнением древесины. Наиболее устойчивые формы — лаванда № 32812 (индекс повреждения 62,0) и лавандин № 11 (индекс 65,8). У остальных форм при этой температуре наблюдалась полная потеря жизнеспособности побегов, индекс повреждения превысил 71 балл.

T (T)	1 .	_	\ 0000 0000
-1 annulus $h = 1$ independential noner	OD IZCYOTILLIY MOMM	оапп ишпекс (Спепцее) /11/11_/11/3 гг
Таблица 6 – Повреждения побег	ов ислодивіл шори, ч	оалл, ипдске і	CDCARCCI, 2020-2023 11.

TI.	I.I.	К	opa	кам	ибий	древ		_	цеви	обі	цая
Исходная форма	Вариант	балл	индекс								
	-16°C	0	0	1	9	1	2	0	0	2	11
L. angustifolia	-18°C	1,5	4,5	1	9	1,6	3,3	1	1	5,1	17,8
№ 32812	-20°C	1,9	5,8	2	18	2	3,9	1	1	6,9	28,9
	-25°C	4,3	12,8	4,3	38,3	4	8	3	3	15,5	62
	-16°C	0	0	1	9	1	2	0	0	2	11
L. angustifolia	-18°C	1,6	4,7	1,7	15	1,8	3,7	1	1	6	24,5
№ 70116	-20°C	3,3	9,8	3,5	31,5	2,4	4,8	1	1	10,1	47
	-25°C	4,5	13,5	5	45	5	10	3	3	17,5	71,5
	-16ºC	0	0	1	9	1	2	0	0	2	11
L. angustifolia	-18°C	1,3	3,8	1,8	16	1,3	2,5	1	1	5,3	23,3
№ 8812	-20°C	2,3	6,8	2,9	25,9	3,5	7	1,1	1,1	9,8	40,7
	-25°C	4,5	13,5	5	45	5	10	3	3	17,5	71,5
	-16°C	0	0	1	9	1	2	0	0	2	11
$L. \times intermedia$	-18°C	1,6	4,9	2	18,6	2,1	4,2	1	1	6,8	27,6
№48	-20°C	2,8	8,2	2,5	22,5	2,1	4,3	1,5	1,5	8,9	36,5
	-25°C	5	15	5	45	5	10	3	3	17,3	71,5
	-16ºC	0	0	1	9	1	2	0	0	2	11
L. × intermedia	-18°C	1,5	4,5	1,5	13,5	2,5	5,0	1	1	6	24
№ 11	-20°C	3	9	2,9	25,9	3,3	6,5	1,8	1,8	10,9	43,2
	-25°C	4,5	13	4,5	40,5	4,5	9	2,8	2,8	16,3	65,8

3.2 Качественный и количественный состав эфирного масла исходных форм

В химическом профиле эфирного масла образцов *L. angustifolia* (рисунок 1) основным компонентом является линалилацетат, содержание которого варьируется от 37 % до 44 %. Линалоол находится на уровне 21–34 %. Максимальное содержание линалилацетата зафиксировано в образце №8812 (43,96 %), при этом уровень линалола составил 21,5 %. Форма № 70116 имеет наиболее сбалансированный состав: линалол 33,9 % и линалилацетат 37,1 %. У формы № 32812 линалилацетат достигает 42,95 % при умеренном уровне линалола (26,4 %).

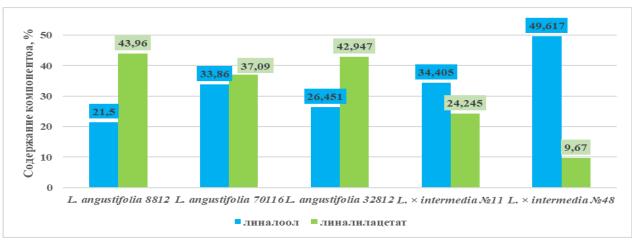


Рисунок 1 — Сравнительная характеристика содержания линалоола и линалилацетата в эфирном масле исходных форм, 2020-2023 гг.

Химический профиль эфирного масла форм L. × *intermedia* показывает обратную соотношение между содержанием линалоола и линалилацетата. В масле формы № 11 наблюдается увеличение линалола (34,4 %) и снижение линалилацетата (24,2 %). В форме № 48 линалоол преобладает (49,6 %), а линалилацетат составляет лишь 9,7 %.

По содержанию других основных компонентов (рисунок 2), формы L. angustifolia можно отнести к хемотипу с низким содержанием 1,8-цинеола и камфоры (менее 1 %). Содержание 1,8-цинеола варьирует от следового (0,011 %) до низкого (0,747 %), камфоры — от 0,13 % до 0,57 %, борнеола — от 0,316 % до 1,716 %. Формы L. \times intermedia, напротив, принадлежат к камфорному хемотипу, унаследованному от L. latifolia, с содержанием этих компонентов от 5 % до 12 %: содержание 1,8-цинеола варьирует от 6,56 % до 8,13 %, камфоры от 5,75% до 12,17%; борнеола до 5,20 %.

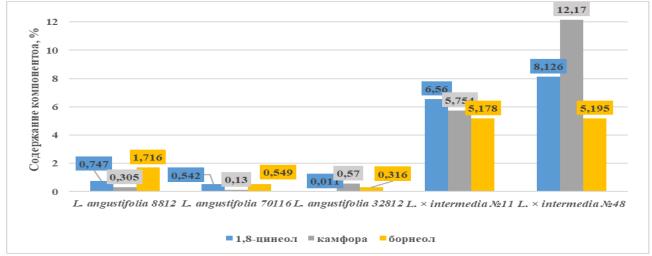


Рисунок 2 — Содержания 1,8-цинеола, камфоры, борнеола в эфирном масле исходных форм, 2020-2023 гг.

По суммарному содержанию сложных эфиров (таблица 7) выделена форма L. angustifolia 8812 (58,3%) с высоким содержанием линалилацетата и лавандулилацетата (10,2%). Сумма сложных эфиров у форм №70116 и №32812 составила 45,6% и 53,6% соответственно. Формы $L. \times intermedia$ относятся к хемотипам с низким содержанием сложны эфиров (№ 11 - 27,0, № 48 - 13,9%). Ценными и перспективными для получения гибридов по признаку качества эфирного масла, являются образцы L. angustifolia № 8812 и № 32812.

Таблица 7 – Химические группы эфирного масла родительских форм, % (средне за 2020-2023 гг.)

Химическая группа	№32812	№ 70116	№ 8812	№ 48	№ 11
Сложные эфиры	52,9	44,6	57,8	13,7	26,8
линалилацетат	43,1	37,5	44,3	12,9	24,5
Спирты	29,8	45,6	27,8	56,9	51,0
линалоол	26,2	34,0	21,6	49,6	34,7
Терпены	8,1	5,4	5,5	7,6	5,3
Кетоны	1,0	0,5	0,5	13,0	6,2
камфора	0,6	0,1	0,3	12,5	5,9
Оксиды	0,5	0,7	1,7	6,8	5,4

3.3 Описание морфологических и хозяйственных признаков исходных форм

В данном разделе приведено полное описание морфологических и хозяйственных признаков исходных форм, такие как габитус куста, структура соцветий и фенологические особенности, хозяйственные признаки, включая продуктивность надземной массы, содержание и качество эфирного масла, а также устойчивость к стрессовым факторам.

ГЛАВА 4 АНАЛИЗ РЕЦИПРОКНЫХ СКРЕЩИВАНИЙ И ОЦЕНКА КОМБИНАЦИОННОЙ СПОСОБНОСТИ ИСХОДНЫХ ФОРМ

4.1 Семенная продуктивность исходных форм

Анализ реципрокных скрещиваний и оценки комбинационной способности родительских форм (таблица 8) показал, что использование в качестве материнских форм L. angustifolia $N \ge 8812$, $N \ge 70116$, $N \ge 32812$ обеспечивает более высокие значения завязываемости и всхожести в сравнении с обратными комбинациями (L. × intermedia $N \ge 11$ и $N \ge 48$).

Таблица 8 – Завязываемость и всхожесть семян у гибридов F₁ лавандина

т аолица о	Subashibucinocid ii	утпоридовтья	парапдина	
Комбинация	Число опыленных	Завязываемость	Всхожесть	Выращено
скрещивания	цветков, шт.	семян, %	семян, %	растений, шт.
70116♀ × 11♂	88	26,1	58,6	31
11♀×70116♂	99	13,4	38,2	18
32812♀×11	184	30,3	44,9	54
11♀×32812♂	100	20,7	36,3	28
8812♀×11♂	143	14,4	34,2	40
11♀ × 8812♂	198	10,5	31,4	36
70116♀×48♂	194	16,4	29,2	43
48♀×70116♂	145	12,8	19,4	33
32812♀×48♂	148	23,2	69,9	56
48♀ × 32812♂	182	17,7	52,3	27
8812♀×48♂	102	21,3	45,0	40
48♀×88126♂	100	18,8	28,4	18

У прямых в сравнении с обратными комбинациями скрещивания средние значения выше по показателям завязываемости (21,8 % против 15,7 %), всхожести (47,1 % против 34,6 %) и числу выращенных растений (44 шт. против 27 шт.). Лучшие результаты по числу выращенных растений и всхожести семян выявлены у материнской формы L. angustifolia №32812, в паре с L. \times intermedia № 11 (54 растения) и установлена максимальная комбинационная способность с L. \times intermedia № 48 (всхожесть семян - 69,9 %, число растений - 56 шт.). Гибридная форма L. \times intermedia № 11 проявляет хорошую комбинационную способность с формой L. angustifolia № 8812, при самом низком числе опыленных растений (88 шт.), среди всех изученных комбинаций, данный генотип показал хорошую всхожесть семян (58,6%).

4.2 Цитологический и цитометрический анализ исходных форм и гибридов

Анализ исходных родительских форм и гибрида F_1 с использованием методов прямого подсчета хромосом и проточной цитометрии, позволил установить соматические числа хромосом для исследуемых генотипов: для L. angustifolia № 32812 - 2n=48 (диплоид, 2x); для фертильного гибрида L. × intermedia № 11 - 2n=96 (аллотетраплоид, 4x); для гибрида F_1 в комбинации скрещивания 32812 × 11 - 2n=72 (аллотриплоид, 3x).

Методом проточной цитометрии подтверждены уровни плоидности и определено относительное содержание ядерной ДНК (2C): для диплоидной формы -1,80 пг, для триплоидной-2,67 пг, для тетраплоидной -3,50 пг (рисунок 3).

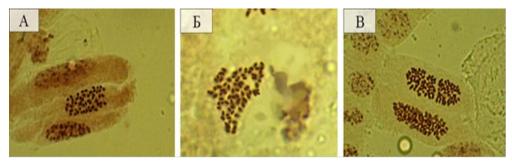


Рисунок 3 — Числа хромосом в клетках растений: A - L. angustifolia №32812 2n=48; B - L. × intermedia F_18812 $\stackrel{\frown}{}$ × 11 $\stackrel{\frown}{}$ 2n=72B - L. × intermedia № 11 2n=96

4.3 Исследования фенологических фаз гибридов F₁ лавандина

Изучены особенности фенологического развития полученных гибридов лавандина (рисунок 4). Установлено, что сроки наступления фенологических фаз у них значительно различаются, демонстрируя широкий диапазон варьирования. Контроль сорт Рабат характеризуется средней продолжительностью и стабильностью фенологических фаз. Для образцов лаванды отмечен более короткий вегетационный период. Продолжительность цветения у гибридов оказалась на 10-15 дней больше как в сравнении с контролем, так и с родительскими формами.

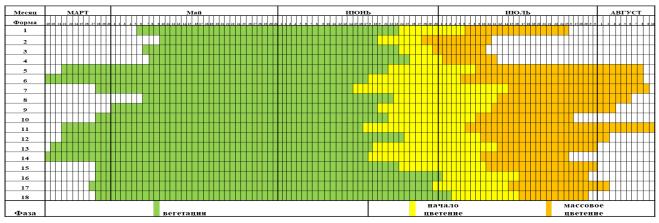


Рисунок 4 - Фазы цветения исходных форм и гибридов F_1 лавандина, 2020-2023 гг.

В подавляющем большинстве случаев (5 из 6 изученных пар скрещивания) использование образцов лаванды в качестве материнской формы приводит к получению более раннецветущего потомства, чем в обратной комбинации. Для создания ультраранних сортов с коротким вегетационным периодом, рекомендуется использовать лаванду узколистную №32812, раннецветущих сортов: рекомендуется использовать лавандины №11 и лаванда №70116, скороспелых сортов: лаванду №70116, сортов с максимально длительным периодом цветения: лавандины №48 и №11, причем форму, несущую желаемый признак, предпочтительно использовать в качестве материнской формы.

4.4 Морфологические параметры исходных форм и гибридов F₁ лавандина

Анализ морфологических параметров гибридов F_1 показал, что, высота растений колеблется в пределах от 73 до 110 см и диаметр от 73 до 107 см, часть комбинаций F_1 (32812 $\stackrel{\frown}{\hookrightarrow}$ × 48 $\stackrel{\frown}{\circlearrowleft}$ и 48 $\stackrel{\frown}{\hookrightarrow}$ × 32812 $\stackrel{\frown}{\circlearrowleft}$) занимают промежуточное положение по сравнению с контролем и не выходят за пределы значений родительских форм (таблица 9). Использование форм лавандина № 11 и № 48 в качестве материнских форм приводит к получению более высокорослого потомства. Для создания высокорослых сортов (высота — 100 см, диаметр растения — 100 см) рекомендуется исходная форма лавандина № 11, для среднерослых сортов (80-90 см) - лавандин № 48 и лаванда № 70112, для низкорослых (до 75 см) форма лаванды № 8812.

Таблица 9 – Морфологическая характеристика исходных форм и гибридов F₁ лавандина

Генотип (комбинация скрещивания)	Высота растения, см	Диаметр куста, см						
Родительские формы								
Lavandula angustifolia № 8812	65±0,9	57±1,6						
Lavandula angustifolia № 70116	57±0,9	62±1,0						
Lavandula angustifolia № 32812	53±0,8	50±1,1						
Lavandula x intermedia № 48	99±2,1	86±1,4						
Lavandula x intermedia № 11	97±3,2	86±1,4						
	оидные формы F ₁							
Lavandula × intermedia cv. Рабат (к)	85±1,1	95±1,2						
32812♀×48♂	86±1,0	94±1,1						
48♀×32812♂	83±09	84±1,07						
32812♀×11	96±1,12	77±1,02						
11♀×32812♂	93±0,93	106±1,35						
70116♀×48♂	77±0,85	86±1,27						
48♀×70116♂	$74\pm0,78$	85±1,52						
70116♀×11♂	105±0,97	93±0,88						
11♀×70116♂	110±2,1	107±0,96						
8812♀×48♂	73±0,96	79±1,41						
48♀×8812♂	82±2,54	73±0,7						
8812♀×11♂	79±1,1	80±0,89						
11♀×8812♂	82±0,78	78±0,71						

4.5 Сравнительная характеристика продуктивности соцветий исходных и гибридных форм F₁ лавандина

Установлено, что высокая продуктивность у гибридов F_1 определяется высокой массой отдельного цветка, большим числом цветков в соцветии и числом цветоносов на растении. Анализ всех реципрокных пар показал, что использование форм № 11 и № 48 в качестве материнских растений приводит к получению более продуктивного потомства. $L. \times intermedia$ № 11 является источником генов по массе цветка и соцветия, $L. \times intermedia$ № 48 является донором генов, отвечающих за число цветков в мутовке и цветоносов на растении. Комбинации F_1 с участием амфидиплоида №1 демонстрируют наиболее выраженный эффект гетерозиса по массе цветка и соцветия (до 25 % выше родительских форм). Прямые и обратные скрещивания показали, что форма L. angustifolia № 812 с низкой комбинационной способностью снижает результативность гибридов по признаки продуктивности соцветия и потенциальной урожайности. Контроль сv. Рабат уступает гибридам F_1 в комбинациях с родительскими формами № 32812, № 70116, № 11 и № 48 по признакам масса соцветия и число цветоносов. Селекционно-ценными по данным

признакам являются комбинации 11 + 32812 = 0 и 11 + 70116 = 0, с высокой продуктивностью соцветия и большим числом цветоносов на растении.

4.6 Массовая доля эфирного масла у исходных форм и гибридов F₁ лавандина

Для выделения лучших комбинаций скрещивания по содержанию эфирного масла в надземной массе был проанализирован распределение генотипов по частоте данного признака. На рисунке представлены результаты для некоторых комбинаций (рисунок 5). Установлено, что массовая доля эфирного масла у гибридов колеблется от 5,5% до 11,25%. Скрещивание родительских пар лавандина № 11 и лаванды № 32812 приводит к получению гибридов F₁ с наибольшим содержанием эфирного масла. Один гибрид демонстрирует признаки депрессии, снижая содержание масла до 5,5%. Всего 10% растений (3 шт.) имеют содержание ниже 7%, в то время как 55% образцов характеризуются содержанием эфирного масла в пределах 8,0%–9,25% (15 растений). Это свидетельствует о высокой эффективности комбинации для получения гибридов с увеличенным содержанием масла. В этой комбинации достигнуты рекордные результаты — синтезированы гибриды с содержанием масла до 9,25% и 11,25% (7 растений). Такие гибриды являются перспективным объектом для внедрения в производство.

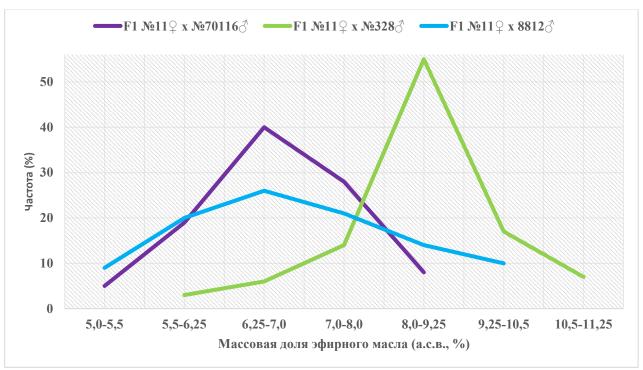


Рисунок 5 — Распределение межвидовых гибридов F₁ по содержанию эфирного масла в разных комбинациях скрещивания

4.7 Проявление эффекта гетерозиса у гибридов F₁ по содержанию массовой доли эфирного масла

Изучение проявления гетерозиса у гибридов F1 лавандина (таблица 10) по содержанию эфирного масла в сравнении с контрольным сортом Рабат (средне содержание массовой доли эфирного масла 7%, в перерасчете на сухое вещество), выявило, что максимальные значения положительного истинного гетерозиса, равные 73,35% и 76,78%, были получены при использовании образцов лавандина №11 и № 48 в качестве отцовской формы в комбинации с образцом лаванды 8812 и 32812 в качестве материнских форм.

Таблица 10 -Проявление степени доминирования, истинного и конкурсного гетерозиса по содержанию массовой доли эфирного масла у гибридов F_1 лавандина, 2020-2023 гг.

Комбинация		дные ф		Гибриды	Степень домини-	Гетерозис	Гетерозис
скрещивания	9	5 0	Рср	₽₁	рования (hp)	истинный, %	конкурсный, %
48♀×8812♂	5,91	3,79	4,85	6,51	1,56	10,15	-7,00
8812♀×48♂	3,79	5,91	4,85	6,70	-1,74	76,78	-4,28
11♀×8812♂	8,3	3,79	6,04	7,11	0,47	-14,33	1,57
8812♀×11♂	3,79	8,3	6,04	6,57	-0,23	73,35	-6,14
48♀×70116♂	5,91	5,1	5,50	6,48	2,40	9,64	-7,42
70116♀×48♂	5,1	5,91	5,50	6,13	-1,54	20,19	-12,42
11♀×70116♂	8,3	5,1	6,70	6,81	0,06	-17,95	-2,71
70116♀×11♂	5,1	8,3	6,70	5,61	0,68	10,00	-19,85
48♀×32812♂	5,91	4,85	5,38	7,10	3,24	20,13	1,42
32812♀×48♂	4,85	5,91	5,38	6,17	-1,49	27,21	-11,85
11♀×32812♂	7,2	4,85	6,03	9,07	2,59	25,97	29,57
32812♀×11♂	4,85	7,2	6,03	7,31	-1,09	50,70	4,43

4.8 Урожайность гибридов F₁ лавандина

Сравнительный анализ массовой доли эфирного масла, урожайности надземной массы и валового сбора эфирного масла у исходных форм, контрольного сорта и гибридов F1, позволил выявить два перспективных гибрида для промышленного использования с высоким содержанием масла и высокой урожайностью: 11 × 32812 $\stackrel{\wedge}{\bigcirc}$ и 32812 × 11 $\stackrel{\wedge}{\bigcirc}$ (таблица 11).

Лучшей комбинационной способностью характеризуются родительские формы лаванды №32812 и лавандина №11.

Таблица 11 – Характеристика гибридов F₁ по содержанию массовой доли эфирного масла, урожайности надземной массы и валового сбора эфирного масла, 2020-2023 гг.

Сорт, гибрид F_1	Массовая доля	Урожайность	Валовый сбор
	эфирного масла,	надземной массы,	эфирного
	%	ц/га	масла, кг/га
	Исходные формы		
Lavandula angustifolia № 8812	1,63±0,11	53,9±4,65	87,0±7,65
Lavandula angustifolia № 70116	1,9±0,09	66,1±5,18	126,4±10,32
Lavandula angustifolia № 32812	1,5±0,10	45,3±3,22	66,8±5,68
Lavandula x intermedia № 48	2,8±0,14	116,4±4,62	256,9±26,49
Lavandula x intermedia № 11	2,2±0,12	87,9±3,85	191,2±15,07
Гибриды F ₁			
Lavandula x intermedia cv. Рабат	$2,9\pm0,17$	72,92±2,71	211,47±10,90
8812♀×11♂	2,33±0,05	62,66±3,12	145,99±11,66
11♀×8812♂	2,68±0,18	63,44±3,46	170,02±12,54
48♀×8812♂	2,46±0,09	62,35±3,41	153,38±15,09
8812♀ × 48♂	2,75±0,12	58,45±3,34	160,74±12,23
48♀×70116♂	2,25±0,11	57,02±3,69	128,29±9,67
70116♀×48♂	2,51±0,15	56,48±2,16	141,76±9,39
70116♀×11♂	2,34±0,23	86,75±6,68	202,9±16,96
11♀×70116♂	3,03±0,24	68,27±2,66	206,85±9,88
11♀×32812♂	3,28±0,10	76,66±3,65	251,45±30,17
32812♀×11♂	$3,08\pm0,05$	68,89±2,62	212,18±13,25
32812♀×48♂	2,86±0,12	62,23±3,76	177,98±13,03
48♀×32812♂	2,96±0,19	65,38±5,46	193,52±13,95

4.9 Морозоустойчивость гибридов F₁ лавандина

Анализ морозоустойчивости полученных гибридов F_1 выявил значительное расщепление по данному признаку, что позволило выделить генотипы с различным уровнем адаптации к низким температурам (таблица 12).

Подавляющее большинство гибридных комбинаций получило необратимые повреждения с индексом >70. Исключением стал гибрид 11 $\stackrel{\frown}{}$ × 32812 $\stackrel{\frown}{}$, который продемонстрировал высокую морозоустойчивость, его индекс повреждения составил всего 44,0, превзойдя контроль сv. Рабат по этим показателям (балл 15,5, индекс повреждения 59,5). Образцы лаванды узколистной № 32812 и лавандина № 11 являются носителями генов морозоустойчивости.

Таблица 12 - Повреждения структурных частей растений, вариант -25°C

Контроль, гибриды F ₁	Кора		Камбий		Дре	весина	Серд	цевина	Общая средняя	
	балл	индекс	балл	индекс	балл	индекс	балл	индекс	балл	индекс
су. Рабат (к)	4	12	4	36	4	8	3,5	3,5	15,5	59,5
32812♀ x 48♂	5	15	5	45	5	10	3	3	18	70,8
48♀ x 32812♂	5	15	5	45	5	10	3	3	18	70,8
701116♀ x 48♂	4,9	14,6	4,6	41,6	4,8	9,5	3,3	3,3	17,5	66,5
48♀ x 70116♂	4,9	14,6	4,9	43,9	4,8	9,5	3,5	3,5	17	71,5
48♀ x 8812♂	5	15	5	45	5	10	3	3	18	70,8
8812♀ x 48♂	4,9	14,6	4,9	43,9	4,8	9,5	3,5	3,5	17	71,5
32812♀ x 11♂	5	15	5	45	5	10	3	3	18	70,8
11 $\stackrel{\frown}{}$ x 32812 $\stackrel{\frown}{}$	3	9	3	26,6	3,9	7,9	3,1	3,1	13	44
70116♀ x 11♂	4,8	14,6	4,9	43,9	4,8	9,5	3,1	3,1	17,6	71,1
11♀ x 01116♂	5	15	5	45	4,8	9,5	3	3	17,8	72,5
8812♀ x 11♂	5	15	5	45	5	10	3	3	18	73
11♀ x 8812	5	15	5	45	5	10	3	3	18	73

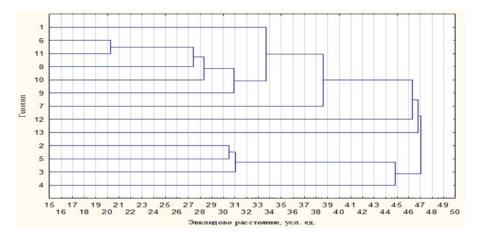
4.10 Компонентный состав эфирного масла гибридов F1 лавандина

Сравнительное изучение компонентного состава эфирного масла полученных гибридов лавандина, позволило выделить перспективные образцы с улучшенным качеством эфирного масла, превосходящих на 15-18 % по содержанию линалилацетата контроль cv. Рабат (26,97 %): гибриды в комбинациях 8812 $\stackrel{\frown}{}$ \times 48 $\stackrel{\frown}{}$ (31,11 %, +15 %) и 11 $\stackrel{\frown}{}$ \times 32812 $\stackrel{\frown}{}$ (37,29 %, +39 %) (таблица 13).

Минимальное содержание 1,8-цинеола, значительно ниже контроля (5,44 %) установлено для гибридов в комбинациях 48 $\stackrel{\frown}{\hookrightarrow}$ × 8812 $\stackrel{\frown}{\circlearrowleft}$ (0,77 %) и 32812 $\stackrel{\frown}{\hookrightarrow}$ × 11 (1,77 %). Анализ реципрокных пар показал, что выбор материнского растения оказывает влияние на хемотипы полученных гибридов по содержанию линалилацетата. Выделены лучшие материнские формы (*L. angustifolia* № 8812, № 32812, № 70116, *L.* × *intermedia* № 11), рекомендуемые для использования в селекционном процессе по созданю сортов с высоким содержанием линалилацетата (до 37 %).

Таблица 13 — Содержание 1,8-цинеола, камфоры, борнеола, линалоола, линалицетата в эфирном масле гибрилов F_1 лаванлина

№ формы	Компонент									
(комбинация)	1,8-ци	инеол	камф	оора	борн		линалоол		линалицетат	
контроль									·	
су. Рабат	су. Рабат 5,4		7,	3	5,	2	42,6		26,9	
Гибриды $F_1,\%$ к контролю										
3/4	1,8	-67	6,2	-15	5,3	+2	61,3	+44	14,5	-46
8812♀×11♂										
11♀×8812♂	2,2	-59	6,3	-14	5,4	+4	58,1	+36	14,3	-47
48♀×8812♂	0,7	-87	7,3	0	5,9	+13	57,2	+34	10,6	-60
<i>8812</i> ♀× <i>48</i> ♂	2,2	-59	4,2	-42	2,7	-48	39,2	-8	31,1	+15
48♀×70116♂	3,2	-41	9,7	33	5,5	+6	60,7	+42	13,6	-49
11♀×70116♂	4,6	-15	8,5	16	6,3	+21	52,8	+24	13,9	-48
70116♀×48♂	3,3	-39	6,4	-12	4,2	-19	48,5	+14	25,2	-6
70116♀×11♂	4,1	-24	8,6	18	6,9	+33	53,9	+26	13,4	-50
<i>11</i> ♀ × <i>32812</i> ♂	2,4	-56	4,5	-38	2,8	-46	35,3	-17	37,2	+39
32812♀×11♂	1,7	-69	5,5	-25	5,3	-2	44,8	+5	20,9	-22
32812♀×48♂	5,1	-6	6,8	-7	5,2	0	49,6	+16	9,5	-65
48♀×32812♂	4,9	-9	5,9	-19	4,6	-12	46,9	+10	15,9	-41


ГЛАВА 5 КОМПЛЕКСНАЯ ОЦЕНКА МОРФОЛОГИЧЕСКИХ, БИОЛОГИЧЕСКИХ И ХОЗЯЙСТВЕННО-ЦЕННЫХ ПРИЗНАКОВ ГИБРИДНЫХ ФОРМ F₁

5.1 Комплексная оценка гибридных форм F₁

На основе кластерного анализа выявлена степень сходства изучаемых гибридов F_1 с контролем сv. Рабат по комплексу основных хозяйственно-ценных признаков: продуктивности и морфологии — габитус растения, структуре соцветия, показателям урожайности, по биохимическим показателям эфирного масла в сырье. В качестве меры расстояния между каждым коллекционным образцом было выбрано евклидово пространство. По схожести признаков и их величине гибриды F_1 , объединенные в шесть групп (кластеров): первый кластер - 6,11,8,10,9; второй кластер -7; третий кластер — 12; четвертый — 13; пятый -2,5,3; шестой — 4. Близкими по комплексу данных признаков к контрольному сорту Рабат (34 ед. эвклидова расстояния) выделены четыре гибрида в комбинациях скрещивания 11 $\stackrel{\frown}{}$ × 32812 $\stackrel{\frown}{}$ (31 ед. эвклидова расстояния), 70116 $\stackrel{\frown}{}$ × 48 $\stackrel{\frown}{}$ (29,5 ед. эвклидова расстояния), 48 $\stackrel{\frown}{}$ × 70116 $\stackrel{\frown}{}$ (31 ед. эвклидова расстояния) (рисунок 6).

Для установления взаимосвязей хозяйственно ценных признаков использовали парные коэффициенты корреляции (рисунок 7) между следующими показателями: длина соцветия (см), число цветков во второй мутовке (шт.), число цветков в соцветии (шт.), масса цветка (шт.), масса соцветия (гр.), число цветоносов на растении (шт.), 1,8-цинеол (%), линалоол (%), камфора (%), борнеол (%), линалилацетат (%), массовая доля эфирного масла (%), урожай надземной массы (ц/га), валовой сбор эфирного масла (кг/га), высота растения (см), диаметр растения (см). Установлена положительная корреляция (г=0,54) между диаметром растения и массой соцветия. Валовый сбор эфирного масла и число цветков в соцветии находится в обратной зависимости от числа цветков в соцветии, аккумулированных с момента начала цветения (г=-0,58). Выявлена положительная корреляция между средней массой плода и его размером (г=0,87), а

также засухоустойчивостью растения (r=0,49). Установлена положительная корреляция между валовый сбор эфирного масла и высота растения, (r=0,52).

Для установления взаимосвязей хозяйственно ценных признаков использовали парные коэффициенты корреляции (рисунок 7) между следующими показателями: длина соцветия (см), число цветков во второй мутовке (шт.), число цветков в соцветии (шт.), масса цветка (шт.), масса соцветия (гр.), число цветоносов на растении (шт.), 1,8-цинеол (%), линалоол (%), камфора (%), борнеол (%), линалилацетат (%), массовая доля эфирного масла (%), урожай надземной массы (ц/га), валовой сбор эфирного масла (кг/га), высота растения (см), диаметр растения (см). Установлена положительная корреляция (г=0,54) между диаметром растения и массой соцветия. Валовый сбор эфирного масла и число цветков в соцветии находится в обратной зависимости от числа цветков в соцветии, аккумулированных с момента начала цветения (г=-0,58). Выявлена положительная корреляция между средней массой плода и его размером (г=0,87), а также засухоустойчивостью растения (г=0,49).

	•	•					\		,							
1																
2	0,37															
3																
4	-0, 48	-0,44														
5	0,17	0,15	-0,13													
6	0,05	-0,03	0,19	0,40												
7	-0.35	-0,01	-0.06	0,23	$0,\!26$											
8	-0.05	-019	-0.06	0,31	-0,01	0,25	_									
9		0,22	-020	-0.07	0,03	-0.26	-0,01									
10	0,19	0,02	-0.32	-0.27	-0.10	0,16	0,00	0,35								
11	-0.23	0,24	-0.08	0,22	-0,05	0,44	-0.12	-0.29	-0.21							
12	-0.12	036	0,09	0,12	-014	-024	0,28	-0.06	0,18	-023	_					
13	-0.25	0.34	0,21	0,02	0,22	0,07	0,03	0,12	-0.24	-018	-0. 41					
14	0,26	0,45	-019	-0.03	0,24	-0,01	0,12	0,02	0,15	-012	0,05	-0.28	,			
15	-0. 40	-0.03	0,15	0,13	-024	-0.10	-0 04	-0.07	-0.10	0, 19	0,25	0,18	-0. 58	_		
16	0,03	-0,02	0,07	0,30	-018	0.37	0,01	0,29	-0,27	0,09	0,28	-0,01	-0. 42	0,52		
17	-0114	-0,02	0,21	0,36	0,54	0,00	0,12	-0,10	- <mark>0</mark> ,14	0,33	0,25	-0,10	0,46	0,06	0,02 -	
	1	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Рисунок 7 - Матрица корреляций между хозяйственными признаками гибрида F₁ в комбинации скрещивания 11♀ × 32812♂, (r ≥0,50)

Примечание. 1. длина соцветия (см), $\overline{2}$. число цветков во второй мутовке (шт.), $\overline{3}$. число цветков в соцветии (шт.), $\overline{4}$. масса цветка (шт.), $\overline{5}$. масса соцветия (гр.), $\overline{6}$. число цветоносов на растении (шт.), $\overline{7}$. 1,8-цинеол (%), $\overline{8}$. линалоол (%), $\overline{9}$. камфора (%), $\overline{10}$. борнеол (%), $\overline{11}$. линалилацетат (%), $\overline{12}$. массовая доля эфирного масла (%), $\overline{13}$. урожай надземной массы (ц/га), $\overline{14}$. валовой сбор эфирного масла (кг/ га), $\overline{15}$. высота растения (см), $\overline{16}$. диаметр растения (см).

Установлена положительная корреляция между валовый сбор эфирного масла и высота растения, (r=0,52).

5.2 Экономическая эффективность выращивания гибридов F₁ лавандина

Стоимость сырья лавандина рассчитывали исходя из средней цены за 1 кг и урожайности насаждений за четыре года исследований, с учетом товарных качеств. Производственные затраты были рассчитаны по фактическим затратам, согласно данным планово-экономического отдела $\Phi\Gamma$ БУН «НБС-ННЦ». В качестве контроля взят сорт лавандина 'Рабат', схема посадки 1х1 м (10000 растений/га). Гибрид в комбинации скрещивания 11 $\stackrel{?}{\searrow} \times 32812$ был выделен на основе комплекса ценных хозяйственных признаков, превосходящих контроль. Экономическая оценка гибрида продемонстрировала высокую рентабельность выращивания (59,9%) по сравнению с контрольным сортом 'Рабат'. Гибрид F_1 даёт высокие урожаи цветочного сырья и сбор эфирного масла. Позволяет получать высокие доходы — порядка 371,6 тыс. руб. с 1 га. На каждый рубль эксплуатационных затрат можно получить от 1,50 рублей дохода (таблица 14).

Таблица 14 - Экономическая эффективность получения эфирного масла лавандина

Показатель	су. Рабат	11♀×32812♂	
Массовая доля эфирного масла	%	2,9	3,3
1 1	_		
Урожайность надземной массы	ц/га	72,9	76,6
Валовой сбор масла	кг/га	211	251
Расход сырья на 1 кг масла	КГ	30,54	30,54
Затраты на 1 га, включая переработку сырья	тыс. руб.	599	620
Реализационная цена 1 кг. масла	тыс. руб.	3,95	3,95
Доход с 1 га	тыс. руб.	833,5	991,5
Прибыль с 1 га	тыс. руб.	234,5	371,7
Рентабельность	%	39,1	59,9

ЗАКЛЮЧЕНИЕ

На основе комплексного изучения биологических особенностей родительских форм Lavandula angustifolia и L. \times intermedia и их гибридов F_1 , полученных методом реципрокных скрещиваний, были выделены ценные источники хозяйственно-полезных признаков (высокая продуктивность, морозоустойчивость, улучшенный компонентный состав эфирного масла) и созданы новые перспективные гибридные формы, что позволяет рекомендовать их для передачи в Госсорткомиссию с целью включения в Реестр селекционных достижений РФ и дальнейшего использования в производстве.

- 1. Обоснован выбор исходных родительских форм и подтверждена возможность межвидовой гибридизации тетраплоидных фертильных лавандинов с образцами лаванды узколистной.
- 2. Проведены реципрокные скрещивания родительских форм, оценена комбинационная способность по числу выращенных растений и всхожести семян выявлены у материнской формы L. angustifolia № 32812, в паре с L. × intermedia № 11 (54 растения) и установлена максимальная комбинационная способность с L. × intermedia № 48 (всхожесть семян 69,9%, число растений 56 шт.). Гибридная форма L. × intermedia № 11 проявляет хорошую комбинационную способность с формой L. angustifolia № 70116, при самом низком числе опыленных растений (88 шт.),

среди всех изученных комбинаций, данный генотип показал хорошую всхожесть семян (58,6%).

- 3. Проведено комплексное изучение (фенология, морфологические параметры, урожайность, массовая доля эфирного масла, качественный и количественный состав эфирного масла, морозоустойчивость) 12 гибридных форм лавандина F1, полученных в результате реципрокных скрещиваний. Превосходят контроль сорт 'Рабат' следующие гибриды: в комбинации скрещивания 11♀ × 32812♂ по высоте (110 см), диаметру (107 см) растений; гибриды 11♀ × 32812♂ и 32812♀ × 11♂ по содержанию массовой доли (3,28 и 3,08%) и валовому сбору эфирного масла (251 и 212 ц/га); гибрид 11♀ × 32812♂ по устойчивости к низкому темперному режиму с показателями балл 15,5, индекс повреждения 59,5; гибриды в комбинациях 8812♀ × 48♂ (31,1%) и 11♀ × 32812♂ (37,2%) по качеству эфирного масла (содержание линалилацетата).
- 4. Установлена плоидность методами цитологического ицитометрического анализа родительских и гибридной форм в комбинации 11 $\stackrel{?}{\searrow}$ \times 32812 $\stackrel{?}{\circlearrowleft}$. Лаванда узколистная являются: диплоидом с числом хромосом 2n=48, гибрид F1 11 $\stackrel{?}{\searrow}$ \times 32812 $\stackrel{?}{\circlearrowleft}$ 2n=72, лавандин тетраплоидом с 2n=96.
- 5. Выделены перспективные гибриды в комбинациях 8812♀ × 48 (31,85%) и 11♀ × 32812♂ (31,38%), превосходящие контрольный сорт (Рабат) по компонентному содержанию линалилацетата в эфирном масле. Перспективной комбинацией для создания сорта с высоким содержанием эфирного масла является №11♀ × 32812♂. Эта комбинация демонстрирует широкий диапазон варьирования и максимальные показатели массовой доли эфирного масла (до 11%). Для создания сортов с высоким содержанием эфирного масла рекомендуются формы лаванды узколистной № 32812 и лавандина № 11.
- 6. Доказано, что родительские формы лаванды являются источниками ценных селекционных признаков: лаванда узколистная № 8812 высокое содержание линалиацетата, № 32812 морозоустойчивости, № 70116 продуктивности и раннеспелости, что стало основанием для регистрации их как сортов 'Вайлет' (Боркута и др., 2022), 'Прима Южная' (Боркута и др., 2022) и 'Рекорд Никитский' (Боркута и др., 2022) (включены в Реестр РФ и запатентованы).
- 7. Подготовлена научно-техническая документация для передачи в Госсортокомиссию перспективного гибрида лавандина (11 × 32812 \circlearrowleft), с высокой продуктивностью валовым сбором эфирного масла (251 ц/га) и качеством эфирного масла (31,38%). для передачи на Государственное

РЕКОМЕНДАЦИИ ДЛЯ СЕЛЕКЦИИ И ПРОИЗВОДСТВА

- 1. В качестве источников хозяйственно ценных признаков для использования в селекции рекомендуются для создания:
- ультраранних сортов по цветению с коротким вегетационным периодом сорт 'Прима Южная' (№32812); раннецветущих лавандин № 11 и лаванда 'Вайлет' (№ 70116); скороспелых лаванда 'Рекорд Никитский' № 70116; с длительным периодом цветения лавандины № 48 и № 11; высокорослых гибридов— лавандин №11; ладаванды узколистные: 'Вайлет' на высокое содержание линалиацетата, 'Прима южная' морозоустойчивости, 'Рекорд' —продуктивности и раннеспелости.
- 2. Для использования в эфиромасличном производстве, а также в селекции рекомендуются три новых сорта: 'Вайлет', 'Прима Южная' и 'Рекорд Никитски' (включены в Реестр РФ и запатентованы), которые характеризуются высоким качеством эфирного масла, урожайность и морозоустойчивостью, а также новый гибрид лавандина

- $(11\overset{\frown}{\hookrightarrow} \times 32812\overset{\frown}{\circlearrowleft})$, переданный в Госсорткомиссию, который выделяется высокими качеств 1. В качестве источников хозяйственно ценных признаков для использования в селекции рекомендуются для создания:
- ультраранних сортов по цветению с коротким вегетационным периодом сорт 'Прима Южная' (№32812); раннецветущих лавандин № 11 и лаванда 'Вайлет' (№ 70116); скороспелых лаванда 'Рекорд' никитский № 70116; с длительным периодом цветения лавандины № 48 и № 11; высокорослых гибридов— лавандин №11; ладаванды узколистные: 'Вайлет' на высокое содержание линалиацетата, 'Прима южная' морозоустойчивости, 'Рекорд' —продуктивности и раннеспелости.
- 2. Для использования в эфиромасличном производстве, а также в селекции рекомендуются три новых сорта: 'Вайлет', 'Прима Южная' и 'Рекорд Никитский' (включены в Реестр РФ и запатентованы), которые характеризуются высоким качеством эфирного масла, урожайность и морозоустойчивостью, а также новый гибрид лавандина (11 × 32812), переданный в Госсорткомиссию, который выделяется высокими качеством и валовым сбором эфирного масла.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в рецензируемых изданиях, рекомендованных ВАК РФ по специальности 4.1.2. Селекция, семеноводство и биотехнология растений (сельскохозяйственные науки):

1. Феськов, С.А. Изменчивость сортовых характеристик эфиромасличных растений при культивировании в разных природно-климатических условиях / С.А. Феськов, А.П. Диваков, **Ю.С. Хохлов**, О.М. Шевчук // Бюллетень Государственного Никитского ботанического сада. - 2016.- № 156. - С. 112-124.

Статьи в рецензируемых изданиях, входящих в международные реферативные базы данных и системы цитирования (Scopus):

- 2. Tsiupka, S. Evaluation of the photosynthetic apparatus functioning in *Lavandula angustifolia* Mill. at different stages of post aseptic adaptation / S. Tsiupka, V. Tsiupka, I. Zhdanova, Y.V. Plugatar, Y. Khokhlov // Acta Horticulturae. 2022. Vol. 1334. P. 297-304.
- 3. Tsiupka, V. Molecular genetic diversity of *Lavandula* × *intermedia* Emeric ex Loisel. in the Nikita Botanical Garden's collection detected by microsatellite markers / V. Tsiupka, I.V. Bulavin, O.A. Grebennikova, A.O. Emirsaliev, **Yu.S. Khokhlov**, I.V. Mitrofanova // Acta Horticulturae. 2022. Vol. 1339. P. 435-442.
- 4. Bulavin, I.V. The quality of the DNA isolated from *Lavandula angustifolia* leaves / I.V. Bulavin, V.A. Brailko, O.A. Grebennikova, I.V. Mitrofanova, I.V. Zhdanova, **Y.S. Khokhlov** // Acta Horticulturae. 2020. Vol. 1298. P. 563-568.
- 5. Oberemok, V.V. A successful management of secondary metabolite biosynthesis of essential oil plants using unmodified antisense oligonucleotides in a *Lavandula angustifolia* Mill. model / V.V. Oberemok, E.V. Laikova, R.Z. Useinov, N.V. Galchinsky, K.A. Yurchenko, **Yu.S. Khokhlov**, I.A. Novikov // In Vitro Cellular and Developmental Biology Animal. 2020. Vol. 56. S1. P. S61-S62.
- 6. Работягов, В.Д. Межвидовая гибридизация в селекции (*Lavandula x intermedia* Emeric ex Loisel.) на качество эфирного масла / В.Д. Работягов, А.Е. Палий, **Ю.С. Хохлов** // Сельскохозяйственная биология. − 2018. − Т. 53. − № 3. − С. 547-556.

Патенты

- 7. Боркута, А.И. Лаванда декоративная *Lavandula* L. Вайлет: патент 12898 Российской Федерация / А.И. Боркута, В.Д. Работягов, **Ю.С. Хохлов**; заявл. 06.06.2022; опубл. 21.06.2023.
- 8. Боркута, А.И. Прима Южная: патент 13326, Российской Федерация / А.И. Боркута, В.Д. Работягов, **Ю.С. Хохлов**; заявл. 27.05.2022; опубл. 18.12.2023.
- 9. Боркута, А.И. Рекорд Никитский: патент 13327, Российской Федерация / А.И. Боркута, В.Д. Работягов, **Ю.С. Хохлов**; заявл. 27.05.2022; опубл. 27.02.2022.

Работы, опубликованные в других рецензируемых изданиях, рекомендованных BAK $P\Phi$:

- 10. Хохлов, Ю.С. Морозоустойчивость видов и гибридов рода *Lavandula* L. / **Ю.С. Хохлов**, О.М. Шевчук, В.В. Корзин // Биология растений и садоводство: теория, инновации. -2025. -№ 1 (174). C. 64-73.
- 11. Хохлов, Ю.С. Сравнительная характеристика основных хозяйственных признаков межвидовых гибридов рода *Lavandula* L. / **Ю.С. Хохлов**, А.Е. Палий // Биология растений и садоводство: теория, инновации. − 2019. − № 2 (151). − С. 76-85.
- 12. Палий, А.Е. Летучие соединения этанольных экстрактов представителей рода Lavandula L. / А.Е. Палий, В.Д. Работягов, **Ю.С. Хохлов** // Труды Кубанского государственного аграрного университета. -2017. N = 67. C. 195-199.
- 13. Работягов, В.Д. Морфобиологическая характеристика перспективных форм лавандина (L. х *intermedia* Emeric ex Loisel.) / В.Д. Работягов, **Ю.С. Хохлов**, А.Е. Палий // Бюллетень Государственного Никитского ботанического сада. 2017. № 123. С. 83-89.
- 14. Балыкина, Е.Б. Фитосанитарная оценка состояния лавандина в условиях закрытого грунта / Е.Б. Балыкина, О.В. Иванова, В.Д. Работягов, **Ю.С. Хохлов** // Бюллетень Государственного Никитского ботанического сада. 2016. № 118. С. 74-80.

Результаты диссертационных исследований представлены на международных и всероссийских научных конференциях:

- 15. Хохлов, Ю.С. Оценка морозостойкости межвидовых гибридов рода *Lavandula* L. и их родительских форм // Ароматические и лекарственные растения: интродукция, селекция, агротехника, биологически активные вещества, влияние на человека: тезисы междунар. науч.-практ. конф. / Никитский ботанический сад Национальный научный центр РАН. Симферополь, 2021. С. 30.
- 16. Brailko, V.A. The quality of the DNA isolated from the leaves of *Lavandula angustifolia* Mill. / V.A. Brailko, I.V. Bulavin, V.V. Oberemok, I.V. Mitrofanova, I.V. Zhdanova, **Yu.S. Khokhlov** // The First International Symposium on Botanical Gardens and Landscapes: Program and Abstracts. 2019. P. 81-82.
- 17. Палий, А.Е. Динамика фенольных соединений у представителей рода *Lavandula* L. в течение вегетации / А.Е. Палий, В.Д. Работягов, И.Н. Палий, **Ю.С. Хохлов**, О.В. Старцева // Биотехнология как инструмент сохранения биоразнообразия растительного мира (физиолого-биохимические, эмбриологические, генетические и правовые аспекты): материалы VIII Междунар. науч.-практ. конф. 2018. С. 170-171.
- 18. Работягов, В.Д. Компонентный состав и содержание эфирного масла в соцветиях лавандинов / В.Д. Работягов, А.Е. Палий, **Ю.С. Хохлов** // Молодые ученые и фармация XXI века: сб. науч. трудов Четвертой науч.-практ. конф. с междунар. участием. 2016. С. 301-305.