Коростылев Андрей Андреевич

БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ AERVA LANATA JUSS. И ORTHOSIPHON ARISTATUS (BLUME) MIQ. НА ЮЖНОМ БЕРЕГУ КРЫМА И ПЕРСПЕКТИВЫ ИХ КУЛЬТИВИРОВАНИЯ

4.1.4. Садоводство, овощеводство, виноградарство и лекарственные культуры (биологические науки)

Автореферат

диссертации на соискание ученой степени кандидата биологических наук

Диссертационная работа выполнена в Федеральном государственном бюджетном учреждении науки «Ордена Трудового Красного Знамени Никитский ботанический сад – Национальный научный центр РАН»

Научный руководитель:

Шевчук Оксана Михайловна

доктор биологических наук, главный сотрудник лаборатории ароматических и лекарственных растений, заведующая отделом технических культур и биологически активных веществ, заместитель директора по науке ФГБУН «Ордена Трудового Красного Знамени Никитский ботанический сад — Национальный научный центр РАН».

Официальные оппоненты:

Васильева Ольга Юрьевна

доктор биологических наук, доцент, Федеральное государственное бюджетное учреждение науки Центральный сибирский ботанический сад Сибирского отделения Российской академии наук, главный научный сотрудник, заведующая лабораторией интродукции декоративных растений.

Цицилин Андрей Николаевич

кандидат биологических наук, доцент, Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт лекарственных и ароматических растений", ведущий научный сотрудник лаборатории Ботанический сад.

Ведущая организация:

Институт фармации им. А.П. Нелюбина Федерального государственного автономного образовательного учреждения высшего образования «Первый московский государственный медицинский университет им. И.М. Сеченова»

Защита диссертации состоится «24» декабря 2025 г. в 13-00 часов на заседании диссертационного совета 24.1.199.02 при Федеральном государственном бюджетном учреждении науки «Ордена Трудового Красного Знамени Никитский ботанический сад — Национальный научный центр РАН» по адресу: 298648, Российская Федерация, Республика Крым, г. Ялта, пгт Никита, спуск Никитский, 52; e-mail: dissovet.nbs@yandex.ru

С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУН «Ордена Трудового Красного Знамени Никитский ботанический сад — Национальный научный центр РАН» по адресу: 298648, Российская Федерация, Республика Крым, г. Ялта, пгт Никита, спуск Никитский, 52; адрес сайта: http://obr.nbgnsc.ru

Автореферат разослан «<u>24</u> » <u>10</u> 2025 г.

Ученый секретарь диссертационного совета, кандидат биологических наук

Зыкова Вера Константиновна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Современная фармацевтическая промышленность демонстрирует растущий интерес к растительным препаратам, и на данный момент в России демонстрирует тенденцию к возрождению, хотя и сохраняет зависимость от импортируемого лекарственного сырья. Решением этой проблемы является переход к устойчивому культивированию лекарственных растений, в частности включенных в Государственную Фармакопею РФ и обладающих доказанной терапевтической ценностью (особенно в лечении мочекаменной болезни), являются перспективными видами для введения в культуру в России Aerva lanata Juss. (эрва шерстистая) и Orthosiphon aristatus (Вlume) Міq. (ортосифон тычиночный) с целью создания базы отечественного растительного сырья.

Возделывание Aerva lanata и Orthosiphon aristatus на территории России позволит снизить зависимость от импорта и укрепить лекарственную безопасность страны. Кроме того, Россия обладает значительным потенциалом для укрепления своих позиций как экспортера высококачественного сырья и фитопрепаратов, что может частично удовлетворить мировой спрос и тем самым сократить бесконтрольный сбор видов в природе.

Степень разработанности темы. Первые попытки интродукции Aerva lanata в СССР были осуществлены в 1977 году в Грузинской ССР (Куркина, Осипова, 2010). В дальнейшем, профессор Гертруда Григорьевна Запесочная и ее коллеги выявили основные биологически активные соединения данного вида, включая флавоноиды, гликозиды и алкалоиды (Zapesochnaya et al., 1992; Первых и др., 1992). Исследования Василия Ивановича Машанова и его коллег на Крымском полуострове подтвердили способность Aerva lanata завершать полный цикл развития, включая созревание семян, в различных почвенно-климатических условиях (Машанов 1997), И др., что перспективность промышленного выращивания данного вида в регионе (Решетнева, Стукан, 1998). Кроме того, исследования фитохимического профиля Aerva lanata, использованием метода тонкослойной хроматографии, продемонстрировали идентичность экстрактов травы, выращенной в Крыму и с Цейлона, включая флавоноиды и гликозиды (Даниленко, 1997).

Интродукция *Orthosiphon aristatus* на территории СССР началась в 1939 году, когда он был завезен в районы влажных субтропиков Грузинской ССР (Молодожников, 1943). С 1953 по 1955 годы в Советском Союзе были предприняты значительные шаги для организации промышленного культивирования этого растения, а также заложены первые промышленные плантации (Гаммерман, 1960).

Несмотря на интерес и накопленный опыт на сегодняшний день Aerva lanata и Orthosiphon aristatus не введены в культуру, при том, что оба вида включены в Государственную Фармакопею Российской Федерации и являются официнальными.

Цель работы — выявление морфолого-биологических особенностей развития *Aerva lanata* и *Orthosiphon aristatus* в условиях Южного берега Крыма для определения перспективности их культивирования как ценных источников биологически активных веществ.

Задачи исследований:

- 1. изучить особенности роста и развития Aerva lanata и Orthosiphon aristatus в условиях открытого и защищенного грунта;
 - 2. исследовать биологию цветения и плодоношения изучаемых видов;
 - 3. описать особенности семенного и вегетативного размножения;
 - 4. определить продуктивность и качество надземной фитомассы;
- 5. провести оценку успешности интродукции и определить перспективы культивирования изучаемых видов для получения лекарственного сырья.

Научная новизна. В результате изучения биологических особенностей *Aerva lanata* установлены основные возрастные периоды в цикле развития растений. Изучены

особенности прохождения основных фенологических фаз развития *Aerva lanata* и *Orthosiphon aristatus*, включая сроки и характер их цветения и плодоношения, в условиях интродукции в открытом и защищенном грунте. Определены параметры и вариабельность морфологических признаков вегетативных и генеративных органов растений.

Изучены особенности семенного и вегетативного размножения данных видов. Установлены оптимальные сроки и способы высева семян, а также способ укоренения черенков, обеспечивающие высокую всхожесть и приживаемость растений.

Выявлены особенности формирования надземной фитомассы в условиях интродукции и определено ее качество как лекарственного сырья в соответствии с требованиями Государственной Фармакопеи Российской Федерации.

Доказана успешность интродукции и определена перспективность культивирования растений влажных тропиков — Aerva lanata и Orthosiphon aristatus — в открытом грунте как в зоне сухих субтропиков средиземноморского типа на Южном берегу Крыма, так и в Степном Крыму.

Теоретическая и практическая значимость работы. Работа вносит вклад в теорию интродукции растений, предоставляя ценные данные о степени и механизмах адаптации тропических видов к новым для них условиям сухих субтропиков Южного берега Крыма. Проведена комплексная оценка биологических и хозяйственно ценных признаков *Aerva lanata* и *Orthosiphon aristatus*. Выявлены показатели ритмов роста и развития видов, а также морфологические особенности вегетативных и генеративных структур. Разработаны и обоснованы предложения по эффективному размножению данных видов.

В работе дана оценка перспективности культивирования растений влажных тропиков в зоне сухого субтропического климата средиземноморского типа, что является важным вкладом в региональную ботанику. На основании результатов исследований разработаны конкретные агротехнические рекомендации по эффективному размножению и культивированию Aerva lanata и Orthosiphon aristatus в открытом и защищенном грунте. Внедрение этих разработок будет способствовать расширению ассортимента лекарственных растений, возделываемых в регионе, в рамках импортозамещения.

Работа выполнена в рамках госзадания: «Выделить высокопродуктивные формы эфиромасличных и лекарственных растений для селекции на продуктивность, устойчивость к биотическим и абиотическим стрессорам в целях получения качественного сырья для фармацевтической, косметической и пищевой промышленности с дальнейшей его стандартизацией в рамках импортозамещения» (0829-2019-0039), «Создание сортов эфиромасличных и лекарственных растений, содержащих значимые для здоровья человека биологически активные вещества, разработка на их основе и испытание средств (FNNS-2022-0006) улучшения качества жизни человека» И для закономерностей синтеза биологически активных веществ как основы создания сортов эфиромасличных и лекарственных растений – источников ценного растительного сырья и средств для улучшения качества жизни человека в рамках реализации программы импортозамещения» (FNNS-2025-0001).

Методология и методы исследований. Полевые и лабораторные исследования проводились с использованием комплекса классических и современных методов интродукционного и биохимического изучения ароматических и лекарственных растений. Результаты исследований подвергались анализу методом математической статистики в программе Microsoft Excel с учетом общепринятых методик.

Основные положения, выносимые на защиту:

- 1. биоморфологические и фитохимические особенности тропичеких растений (Aerva lanata и Orthosiphon aristatus) в условиях интродукции на Южном берегу Крыма в зоне сухого субтропического климата средиземноморского типа;
 - 2. семенное и вегетативное размножение видов в условиях интродукции;

3. оценка успешности интродукции и перспективы культивирования Aerva lanata и Orthosiphon aristatus в условиях Южного берега Крыма.

Степень достоверности и апробация результатов исследований. Достоверность результатов многолетних исследований подтверждена методами математической статистики. Обработка данных выполнялась с учетом доверительной вероятности Р=0,95, что соответствует общепринятому в биологических исследованиях уровню значимости. Основные результаты исследований были доложены на II Международной научной конференции «Роль метаболомики в совершенствовании биотехнологических средств производства» (Москва, 2019); юбилейной международной научной конференции «90 лет - от растения до лекарственного препарата: достижения и перспективы» (Москва, 2021); Международной научно-практической конференции «Ароматические и лекарственные растения: интродукция, селекция, агротехника, биологически активные вещества, влияние на человека» (Ялта, 2021); Международной научно-исследовательской конференции по продовольственной безопасности и сельскому хозяйству (Ялта, 2021); Всероссийской научно-практической конференции «Тропические и субтропические растения открытого и защищенного грунта» (Ялта, 2022); Международной научно-практической конференции «Ароматические, лекарственные и овощные растения: интродукция, агротехника, биологически активные вещества, влияние на человека» (Ялта, 2023); Всероссийской научной конференции «Биотехнология выращивания лекарственных и эфиромасличных культур» (Санкт-Петербург, Пушкин, 2023).

Публикации. Основные положения и результаты диссертации отражены в 11 работах, в том числе 2 в рецензируемых журналах, рекомендованных ВАК РФ по специальности 4.1.4. Садоводство, овощеводство, виноградарство и лекарственные культуры (биологические науки), 1 в журнале, входящем в международные базы данных (Scopus), 2 в иных рецензируемых журналах, рекомендованных ВАК РФ, 1 в иных научных журналах и 5 в материалах международных конференций.

Объем и структура диссертации. Диссертационная работа изложена на 224 страницах компьютерного текста и состоит из введения, 5 глав, заключения, практических рекомендаций, списка использованной литературы и 5 приложений. Работа содержит 27 таблиц и 43 рисунка. Список литературы включает 211 источник, в том числе 156 на иностранных языках.

Глава 1 СОВРЕМЕННОЕ СОСТОЯНИЕ ИЗУЧЕННОСТИ AERVA LANATA JUSS. И ORTHOSIPHON ARISTATUS (BLUME) MIQ. (ОБЗОР ЛИТЕРАТУРЫ)

В главе приводятся сведения об ареале и систематическом положении Aerva lanata (L.) Juss. и Orthosiphon aristatus (Blume) Miq., их ботаническое описание. Дана фитохимическая характеристика видов и представлено их применение в традиционной медицине. Рассмотрен опыт интродукционного изучения эрвы шерстистой и ортосифона тычиночного в России.

Глава 2 ОБЪЕКТЫ, УСЛОВИЯ ПРОВЕДЕНИЯ И МЕТОДЫ ИССЛЕДОВАНИЙ

Объектами данного научного исследования были выбраны Aerva lanata — многолетнее растение семейства Amaranthaceae с природным распространением в Индии, на Цейлоне, в тропической и Южной Африке, а также на Аравийском полуострове, и Orthosiphon aristatus — многолетний полукустарник семейства Lamiaceae, с природным ареалом, охватывающим экваториальную зону Юго-Восточной Азии, Австралию, Индонезию и Малайзию.

Полевые и лабораторные исследования проводились с использованием комплекса классических и современных методов интродукционного изучения ароматических и лекарственных растений в период с 2019 по 2023 годы на базе лаборатории ароматических и лекарственных растений ФГБУН «Ордена Трудового Красного Знамени Никитский

ботанический сад — Национальный научный центр РАН». Приводится климатическая характеристика в годы проведения исследования в сравнении со среднемноголетними данными. В ходе вегетационных опытов растения выращивались в специально оборудованных экспериментальных парниках с использованием почвенной смеси. Полевые опыты проводились в условиях открытого и защищенного грунта. Наблюдения велись на 30 модельных экземплярах, полученных как в открытом, так и защищенном грунте. Изучение особенностей цветения и репродуктивной биологии видов проводилось совместно с сотрудниками сектора репродуктивной биологии растений НБС. Биохимические исследования качества сырья — совместно с сотрудниками Пятигорского медико-фармацевтического института.

Названия видов приведены в соответствии с номенклатурой в международной базе данных «The World Flora Online». Морфологическое описание вегетативных и генеративных органов растений видов проводилось по живому материалу с использованием Атласа по описательной морфологии высших растений (Федоров и др., 1956, 1962, 1975, 1979) с учетом работы И.П. Серебрякова (1952). Онтогенетические состояния выделены согласно концепции дискретного описания онтогенеза (Работнов, 1950; Уранов, 1975). Фенологические наблюдения проводились согласно методике И.Н. Бейдеман (1974). Обработка материалов фенологических наблюдений по методике Н.Г. Москаленко (1964).

Определение массы 1000 семян проводили по ГОСТ Р 51096-97 (1997) на аналитических весах AND HR-250A (252 г/0,1 мг) в 4-х кратной повторности. Морфологическое описание семян по методике Н.Н. Каден и С.А. Смирновой (1974) с учетом работ И.А. Ивановой и Н.М. Дудик (1974), З.Т. Артюшенко и А.А. Федорова (1986). Изучение качества семян согласно методике М.К. Фирсовой (1969) с учетом ГОСТ Р 51096-97 (1997). Особенности цветения изучали по методическим рекомендациям В.Н. Голубева, Волокитина (1986) и Пономарева (1960, 2000). Растительный материал фиксировали растворами Карнуа и FAA. Для изучения мужских и женских генеративных структур готовили постоянные препараты по общепринятым методикам (Ромейс, 1954; Шевченко и др., 1986; Паушева, 1990), парафиновые срезы готовили с помощью ротационного полуавтоматического микротома RMD-3000 (Россия). Окрашивали их метиловым зеленым и пиронином (Шевченко, Чеботарь, 1992), а также гематоксилином по разработанной в Ботаническом институте им. В.Л. Комарова (БИН) методике (Жинкина, Воронова, 2000) с подкраской алциановым синим. Анализ препаратов проводили с помощью микроскопа AxioScope A.1 (Carl Zeiss), Nikon SMZ745T и ЛОМО Микмед-6. Микрофотографии получены с помощью системы анализа изображения Ахіо CamERc 5s (Carl Zeiss).

Семенную продуктивность определяли по методу И.В. Вайнагий (Вайнагий, 1974) на генеративный побег с 10 особей, с дальнейшим пересчетом на растение (Методические рекомендации..., 1980). Обработка черенков стимуляторами корнеобразования проводилась по методике Р.Х. Турецкой (1962).

Изучение качества сырья проведено в соответствии с последним изданием Государственной Фармакопеи (2015). Для оценки успешности интродукции была использована шкала, разработанная в НБС-ННЦ (Шевчук и др., 2022). Статистическая обработка данных сделана согласно общепринятым методикам (Плохинский, 1970; Лакин, 1990) с использованием пакета программ Excel 2010. Оценка вариабельности признаков проводилась с использованием эмпирической шкалы С.А. Мамаева (1975).

Глава 3 БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ AERVA LANATA JUSS. В УСЛОВИЯХ ИНТРОДУКЦИИ

3.1 Описание жизненного цикла

Выявленные нами критерии возрастных состояний *Aerva lanata* позволили выделить три основных возрастных периода в цикле развития растений: латентный,

прегенеративный и генеративный. В прегенеративном периоде отмечали проростки, ювенильное, имматурное и виргинильное состояния. Латентный период (se) длится от созревания семени до его прорастания. Семена представляют мелкие (0,5-0,7 мм), твердые, блестящие орешки бобовидной формы черного цвета. Этап проростков (р) характеризуется активным формированием первичных органов. Проростки мелкие лопастевидные, черешковые светло зеленые 2,0 мм в длину и 1,0 мм в ширину. Ювенильная стадия (j) характеризуется появлением первой пары настоящих листьев. Она формируется на высоте 1,0-1,5 см над уровнем почвы. Имматурное состояние (im) характеризуется отмирание семядольных листочков. Растения имеют 3-4 пары настоящих листьев. Высота растений составляет 4-6 см. Виргинильный период (v) характеризуется вертикальным ростом и развитием всех вегетативных органов. Растения достигают 15-22 см в высоту. Генеративный период (g) включает молодые генеративные и средневозрастные растения. Главный побег молодых растений достигает 25-29 см в высоту. В период массового цветения средневозрастные растения могут достигать 115 см в высоту.

3.2 Сезонная динамика роста и развития

Ввиду того, что *Aerva lanata* является растением тропического происхождения, сроки посева семян определялись периодом, когда минимальные среднесуточные температуры воздуха не опускались ниже $+15^{\rm o}$ C, в условиях ЮБК – это вторая декада мая – первая декада июня.

Для появления всходов необходима сумма эффективных температур (>15°C) $151,9\pm14,1$ °C, активных температур (>10°C) $-530,0\pm47,0$ °C. На рисунке 1 отражены основные фенологические фазы эрвы шерстистой за годичный цикл (в среднем за 5 лет).

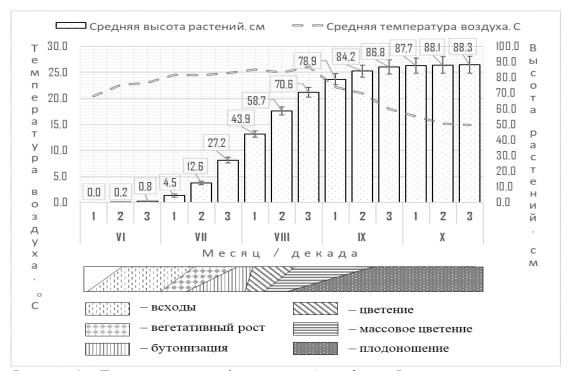


Рисунок 1 — Динамика роста и феноспектр $Aerva\ lanata$ Juss. в открытом грунте (средние значения за 2019-2023 гг.)

В открытом грунте фаза массового цветения растений наступает в среднем во второй декаде августа (для этого необходимо $1867,0\pm49,2^{\circ}$ С активных температур и порядка 674° С эффективного тепла), массового плодоношения – в I декаде сентября. Для вступления в фазу необходимо $2434,0\pm47,5^{\circ}$ С активного тепла или 904° С эффективного (таблица 1).

Таблица 1 — Эколого-биологическая характеристика *Aerva lanata* Juss. (средние значения за 2019-2023 гг.)

	Условия культивирования								
Фенологическая	откр	ытый гр	унт		защиц	ценный	грунт		
фаза	календарный	Н, см	СЭТ,	СЭТ, САТ,	календарный	Н, см	СЭТ,	CAT,	
	период	11, CM	°C	°C	период	11, CM	°C	$^{\circ}\mathrm{C}$	
Всходы	III-я декада	<1	152	530	II-я декада	<1	116	341	
БСХОДЫ	кнои	\1	132	330	кноии	\ 1	110	341	
Вегетативный	II-я декада	11,5-	309	944	II-я декада	5,2-	350	859	
рост	июля	13,7	309	244	июля	9,0	330	039	
Бутонизация	III-я декада	25,3-	466	1353	I-я декада	18,1-	670	1660	
рутонизация	июля	29,1	400	1333	августа	23,3	070	1000	
Массовое	II-я декада	56,1-	674	1867	III-я декада	36,3-	906	2205	
цветение	августа	61,3	0/4	1007	августа	47,7	900	2203	
Массовое	I-я декада	75,3-	904	2434	II-я декада	50,0-	1163	2858	
плодоношение	сентября	82,5	904	2434	сентября	62,8	1103	2030	

Условные обозначения: H — высота растений, CЭТ — сумма эффективных температур (>15°C) нарастающим итогом с момента посева, CAT — сумма активных температур (>10°C) нарастающим итогом с момента посева

Период вегетации в открытом грунте составляет $101,6\pm5,4$ дня, в защищенном – $111,8\pm5,1$ дня. Растения в открытом грунте к концу вегетации достигают высоты 75,3-82,5 см, в защищенном – 50,0-62,8 см.

Несмотря на разницу в сроках наступления фенологических продолжительности, а также общее количество тепла, необходимое для их прохождения, вид успешно проходит все фазы развития как в условиях защищенного грунта, так и в условиях открытого. При этом условия последнего позволяют сократить сроки наступления фазы массового цветения. Немаловажной особенностью также является значительная разница ПО высоте растений к концу вегетации, может свидетельствовать возможности получения потенциально выхода свежесобранной надземной массы, которая и является лекарственным сырьем.

На основании вышесказанного, можно отметить, что *Aerva lanata* демонстрирует высокую степень адаптивности и успешно завершает полный цикл развития в условиях открытого грунта, что подтверждает принципиальную возможность и целесообразность ее культивирования с целью получения лекарственного сырья.

3.3 Особенности цветения и плодоношения

При изучении биологии цветения установлено, что эрва шерстистая характеризуется растянутым периодом цветения — от 30 до 50 дней, развитие цветков проходит в акропетальном порядке. Цветки *Aerva lanata* собраны в плотные колосковидные соцветия. В среднем они достигают 1,10 см в длину и 0,24 см в ширину. Коэффициент вариации длины и ширины соцветий высокий, составив 34,79% и 22,71% соответственно (таблица 2).

Таблица 2 – Морфометрические особенности генеративных органов *Aerva lanata* Juss. (средние значения за 2020-2022 гг.)

Ает va tunuta Juss. (средние значения за 2020-2022 II.)									
Статические Длина		Диаметр	Число цветков	Число соцветий					
характеристики	соцветия, см	соцветия, см	в соцветии, шт.	на побеге, шт.					
X±m	$1,10\pm0,17$	$0,24\pm0,04$	64,38±9,12	73,82±15,41					
min-max	0,5-2,1	0,2-0,3	28,0-112,0	14,0-142,0					
V, %	34,79	22,71	33,41	51,49					

При изучении особенностей плодоношения установлено, что эрва шерстистая характеризуется непрерывной репродукцией с длительной диссеминацией. Плод *A. lanata* представляет собой густоопушенную односемянную коробочку округлой формы от зеленоватого до кремового цвета. Зрелые плоды имеют светло-коричневый цвет и удлиненный носик, на конце которого иногда остается двулопастное рыльце. Созревание семян происходит неравномерно, начиная с нижней части колоска к верхней, по аналогии пветения.

Выявлено, что по способу распространения диаспор эрва шерстистая относится к растениям-барохорам. Установлено, что величина коэффициента семенной продуктивности составила 38,2%. Реальная семенная продуктивность побега варьирует в пределах 1266,3-1844,9 шт. семян, что в 2,75 раза ниже потенциальной (таблица 3).

Таблица 3 — Семенная продуктивность генеративного побега *Aerva lanata* Juss. (средние значения за 2020-2022 гг.)

Показатель	Значение
Число семяпочек на побеге (ПСП), шт.	4572,3±853,5
Число семян на побеге (РСП), шт.	1764,8±427,1
Коэффициент семенификации (КСП), %	38,6

3.4 Биология семян в контексте генеративного размножения

При изучении биологических особенностей семян *A. lanata* выявлено, что они мелкие, твердые, блестящие бобовидной формы черного цвета. Характеризуются очень низким (от 5 до 10%) уровнем изменчивости морфометрических параметров (таблица 4).

Таблица 4 – Морфометрические особенности семян Aerva lanata Juss.

Объект	Признак	X±m	Min	Max	V, %
	длина, мм	$0,72\pm0,01$	0,63	0,78	5,21
Cove	ширина, мм	0,55±0,01	0,48	0,62	6,04
Семя	толщина, мм	$0,40\pm0,01$	0,38	0,43	3,91
	длина / ширина	1,30±0,01	1,16	1,44	2,98
	длина, мм	0,37±0,01	0,33	0,41	5,39
Перисперм	ширина, мм	0,36±0,01	0,32	0,40	5,79
	длина/ширина	1,03±0,01	0,92	1,11	3,58
	длина, мм	1,55±0,03	1,36	1,69	5,75
Зародыш	ширина, мм	$0,16\pm0,01$	0,14	0,18	6,47
	длина / ширина	9,88±0,14	8,72	10,71	3,71
Длина перисп	ерма / длина семени	0,52±0,01	0,48	0,52	1,81
Длина зародыша / длина семени		2,16±0,02	2,03	2,35	2,39
Длина зароды перисперма	ша / длина	4,16±0,04	3,79	4,57	2,78

В среднем их длина составляет 0.72 мм, ширина -0.55 мм, а толщина -0.4 мм. Масса 1000 штук семян составляет 0.097 ± 0.006 г. Изучение анатомического строения

семян эрвы шерстистой, продемонстрированного на рисунке 2, показывает их нормальное развитие внутренних структур (как и у других представителей семейства Amaranthaceae).

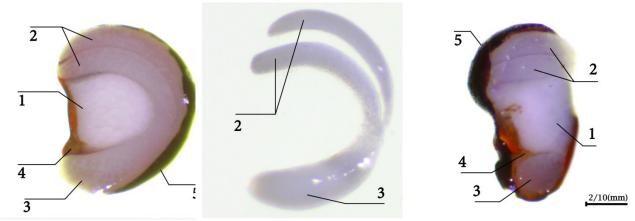


Рисунок 2 — Вид продольного (A) и поперечного (C) срезов семени, зародыша (B) Aerva lanata Juss.: 1 — перисперм; 2 — семядоли; 3 — корешок зародыша; 4 — эндосперм; 5 — семенная оболочка (Фото получены при помощи микроскопа Nikon SMZ745T)

Цвет полноценных, выполненных, зрелых семян черный, однако в зависимости от расположения их в соцветии могут встречаться и семена от рыжего до темно-коричневого цвета.

Установлено, что для прорастания семян эрвы шерстистой необходимым условием является температура воздуха выше 20° C. В лабораторных условиях при переменных температурах ($20\text{--}30^{\circ}$ C) на свету начинают прорастать на седьмой день. Энергия прорастания при этом составляет $10.65\pm1.21\%$, всхожесть $-58.50\pm3.34\%$ (таблица 5).

Таблица 5 – Биологические особенности семян *Aerva lanata* Juss. в зависимости от условий проращивания (средние значения за 2019-2023 гг.)

Условия	Масса 1000 семян, г	Энергия прорастания, %	Лабораторная всхожесть, %
20°C		$0,25\pm0,12$	$4,30\pm0,49$
20-30°C	0,097±0,006	10,65±1,21	58,50±2,34
30°C		$5,70\pm0,76$	$40,85\pm3,12$
		$HCP_{05} = 1,96$	$HCP_{05} = 5,37$

Выявлено, что семена эрвы шерстистой характеризуется надземным типом прорастания. Установлено, что согласно классификации И.В. Борисовой (1996) семена относятся ко второму типу, подтипу с медленным прорастанием и максимумом проросших семян в середине периода проращивания. В онтогенетическом развитии прорастание семян и развитие проростков эрвы шерстистой идет по пути, при котором основная дифференциация проростка происходит вне семени.

Установлено, что при хранении семена эрвы шерстистой сохраняют свою всхожесть более 50% в течение пяти лет. При этом при хранении семян от полугода до трех лет включительно наблюдается незначительное увеличение лабораторной всхожести, в сравнении со свежесобранными семенами, которые высевались сразу, без закладки их на хранение. В результате исследований было также выявлено, что семена эрвы шерстистой обладают неглубоким физиологическим покоем.

Оптимальными сроками для посева семян *Aerva lanata* в открытый грунт на Южном берегу Крыма можно считать период со второй декады мая по первую декаду июня (рисунок 3).

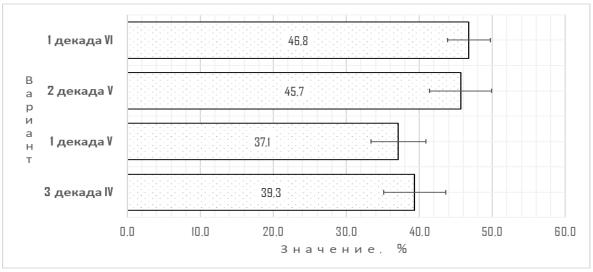


Рисунок 3 — Всхожесть семян *Aerva lanata* Juss. в условиях открытого грунта (средние значения за 2019-2021 гг.)

3.5 Особенности вегетативного размножения

С целью оценки потенциальной способности вида к вегетативному размножению, было проведено исследование по выявлению особенностей ризогенеза стеблевых черенков эрвы шерстистой в зависимости от варианта стимулирования корнеобразования и части побега, выбранного для заготовки черенков (таблица 6).

Таблица 6 – Степень укоренения (%) стеблевых черенков *Aerva lanata* Juss. (средние значения за 2019-2021 гг.)

№	Вариант стимулирования корнеобразования	Часть побега (фактор В)			
	(фактор А)	основание	средняя часть		
1	Вода (контроль)	8,11±0,56	5,22±0,22		
2	ИМК 50 мг/л	12,22±0,95	8,89±0,11		
3	Смесь активированного угля с ИМК 50 мг/кг	9,22±0,48	6,44±0,48		
	$HCP_{A 05} = 1,92 HCP_{B 05} = 2,35$	$HCP_{AB\ 05} = 1,36$			

На основании результатов проведенных исследований было установлено, что стеблевые черенки эрвы шерстистой характеризуется низкой укореняемостью. Наблюдения показывают, что уровень корнеобразования у черенков данного вида не достигал 30% даже в случаях применения стимуляторов корнеобразования, что, в свою очередь, указывает на сложности вегетативного размножения вида. На основании этих данных эрва шерстистая была отнесена к категории трудноукореняемых растений.

3.6 Продуктивность и качество надземной фитомассы

В результате сравнительного анализа результатов исследования биометрических характеристик и продуктивности надземной фитомассы *Aerva lanata* в период массового цветения и плодоношения в среднем за период исследований выявляются заметные различия между условиями культивирования (таблица 7).

Таблица 7 – Биометрические особенности и продуктивность надземной фитомассы *Aerva lanata* Juss. в период массового цветения – плодоношения в зависимости от условий

культивирования (средние значения за 2019-2023 гг.)

Попольти	Открытый грунт				Защищенный грунт			
Параметр	X±m	Min	Max	V, %	X±m	Min	Max	V, %
Толщина корневой шейки, см	1,2±0,1	0,8	1,4	19,3	0,8±0,1	0,7	1,0	15,9
Высота растений, см	83,9±2,4	78,2	92,6	6,5	79,6±7,7	61,7	98,1	21,8
Диаметр растений, см	72,4±3,7	62,0	83,4	11,3	57,7±12,0	28,9	88,0	46,4
Количество побегов, шт.	15,5±1,5	12,2	19,7	21,5	8,8±1,1	5,9	11,6	28,0
Длина побегов, см	61,7±0,5	60,2	63,1	2,0	59,8±7,1	43,8	81,1	26,5
Продуктивность надземной фитомассы, г/раст.	141,8±14,5	95,5	178,2	22,9	68,3±14,2	32,3	99,7	46,4

В открытом грунте Aerva lanata показывает среднюю продуктивность на уровне $141,8\pm14,5$ г/раст., тогда как в защищенном грунте — лишь $68,3\pm14,2$ г/раст., что в 2,1 раза ниже. Вариация продуктивности в открытом грунте (22,9%) ниже, чем в защищенном (46,4%), что подтверждает вывод о большей стабильности условий роста в открытом грунте.

С целью определения качества надземной фитомассы эрвы шерстистой как лекарственного сырья, полученной в условиях Южного берега Крыма, проведена оценка соответствия надземной фитомассы требованиям сырья, а также ее биохимический анализ. В результате комплексной оценки внешних и микроскопических характеристик надземной фитомассы эрвы шерстистой было подтверждено соответствие требованиям действующей Государственной Фармакопеи Российской Федерации к сырью (рисунок 4).

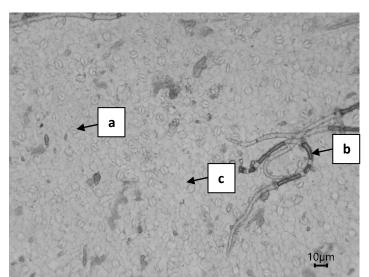


Рисунок 4 — Фрагмент эпидермиса нижней стороны листа Aerva lanata Juss.: а — устьица аномоцитного типа, b — волоски с характерным зубчатым сочленением, с — клетки эпидермиса с сильноизвилистыми стенками (Фото получены при помощи микроскопа ЛОМО Микмед-6)

Показатели качества исследуемых образцов сырья эрвы шерстистой, в том числе влажность, зола общая, зола, нерастворимая в хлористоводородной кислоте (10%-ной), соответствуют требованиям действующей Государственной Фармакопеи Российской Федерации к сырью (таблица 8).

Таблица 8 – Некоторые показатели качества высушенной травы *Aerva lanata* Juss., как

лекарственного сырья (средние значения за 2020-2021 гг.)

Показатель качества	Норма	Условия	Фенологическая	Результат, %	
	1	культивирования	фаза	0.01 . 0.00	
			цветение	$9,91 \pm 0,88$	
		открытый грунт	цветение –	$9,08 \pm 1,84$	
Влажность	не более		плодоношение	7,00 ±1,04	
Блажность	12%		цветение	$9,46 \pm 3,47$	
		защищенный грунт	цветение –	0.00 + 1.45	
			плодоношение	$8,98 \pm 1,45$	
			цветение	$11,85 \pm 0,94$	
	не более	открытый грунт	цветение –	12.04 + 1.05	
2			плодоношение	$13,04 \pm 1,95$	
Зола общая	15%		цветение	$12,80 \pm 1,97$	
		защищенный грунт цветение – плодоношение		10.46 + 2.01	
				$12,46 \pm 2,01$	
			цветение	$6,80 \pm 0,16$	
		открытый грунт	цветение –	7.12 + 0.17	
Зола, нерастворимая в	не более		плодоношение	$7,13 \pm 0,17$	
хлористоводородной кислоте	8%		цветение	$7,08 \pm 0,34$	
		защищенный грунт	цветение –		
			плодоношение	$7,04 \pm 1,03$	

Согласно Государственной Фармакопее, качество цельного и измельченного сырья определяется суммой флавоноидов в пересчете на рутин — не менее 0,5% (контроль). Содержание флавоноидов в пересчете на рутин и абсолютно сухое сырье в исследованных образцах сырья эрвы шерстистой травы, за исключением образца из защищенного грунта 2021 года в фазу цветения, соответствовало требованиям фармстатьи Государственной Фармакопеи. При этом содержание флавоноидов в сырье из открытого грунта превышало в 2 раза этот показатель в сырье, полученном в условиях защищенного грунта (рисунок 5).

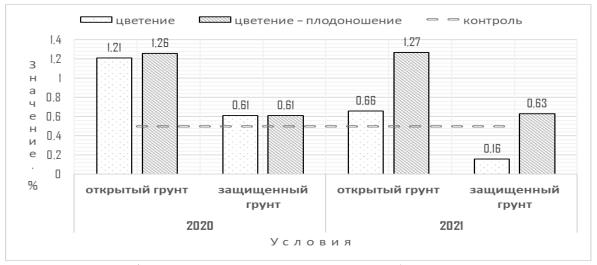


Рисунок 5 – Сумма флавоноидов в пересчете на рутин и абсолютно сухое сырье в траве *Aerva lanata* Juss. (2020-2021 гг.)

Глава 4 БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ *ORTHOSIPHON ARISTATUS* (BLUME) MIQ. В УСЛОВИЯХ ИНТРОДУКЦИИ

4.1 Сезонная динамика роста и развития

Ввиду того, что *Orthosiphon aristatus* является растением тропического происхождения, сроки посадки укоренившихся черенков определялись периодом, когда минимальные среднесуточные температуры воздуха не опускались ниже $+15^{\circ}$ C. В связи с ежегодными температурными колебаниями эти сроки из года в год приходились на разное время: конец весеннего периода или начало летнего.

На рисунке 6 отражены основные фенологические фазы ортосифона тычиночного за годичный цикл (в среднем за 5 лет).

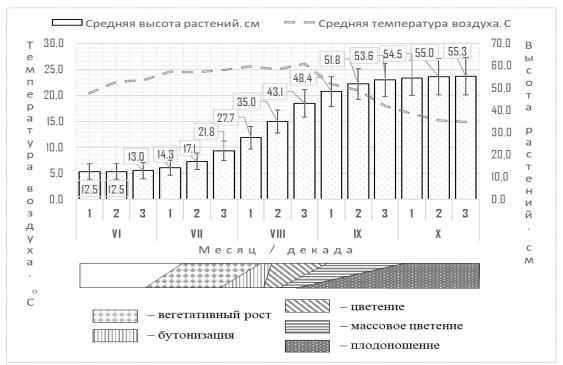


Рисунок 6 – Динамика роста и феноспектр *Orthosiphon aristatus* (Blume) Miq. (средние значения за 2019-2023 гг.)

Установлено, что для наступления фазы массового цветения во второй декаде августа в открытом грунте необходимо в среднем $1888,0\pm109,2^{\circ}$ С активных температур. К этому времени накапливается порядка 697° С эффективного тепла, а растения достигают 29,8-40,2 см в высоту. Плодоношение же приходится на третью декаду августа. Для вступления в фазу необходимо $2312,0\pm61,6^{\circ}$ С активного тепла или 857° С эффективного. Растения достигают 37,0-49,2 см в высоту (таблица 9).

В среднем, период вегетации (от посадки укорененных черенков до наступления неблагоприятных условий) составляет 126,8±5,2 дня. За это время вид проходит полный цикл развития, однако не формирует семян, либо формирует их незначительное количество.

В условиях защищенного грунта с момента посадки укорененных черенков до наступления массового цветения в среднем проходит $99,0\pm1,9$ дней, что в 1,2 раза дольше по сравнению с открытым грунтом. Несмотря на разницу в сроках наступления фенологических фаз, их продолжительности, а также общее количество тепла, необходимое для их прохождения, вид успешно проходит все фазы развития, как в условиях защищенного грунта, так и в условиях открытого. При этом условия последнего позволяют сократить сроки наступления фазы массового цветения.

(средние значения за 2019-2023 11.)										
	Условия культивирования									
Фенологическая	откр	ытый гр	унт		защищенный грунт					
фаза	календарный период	Н, см	СЭТ, °С	CAT,	календарный период	Н, см	СЭТ, °С	CAT,		
Вегетативный рост	II-я декада июля	13,4– 20,8	357	1071	I-я декада июля	16,9– 24,3	371	965		
Бутонизация	III-я декада июля	17,5– 26,1	552	1565	II-я декада августа	30,7– 36,4	807	1968		
Массовое цветение	II-я декада августа	29,8– 40,2	697	1888	I-я декада сентября	38,6– 45,2	1053	2529		
Массовое плодоношение	III-я декада августа	37,0– 49,2	857	2312	II-я декада сентября	42,8– 56,1	1162	2845		

Таблица 9 – Эколого-биологическая характеристика *Orthosiphon aristatus* (Blume) Miq. (средние значения за 2019-2023 гг.)

Условные обозначения: H — высота растений, $C \ni T$ — сумма эффективных температур (>15°C) нарастающим итогом с момента посева, CAT — сумма активных температур (>10°C) нарастающим итогом с момента посадки

4.2 Особенности цветения и плодоношения

При изучении биологии цветения ортосифона тычиночного установлено, что вид формирует соцветие длиной от 7 до 15 см, при этом длительность цветения одного соцветия составляет 8–15 дней, а одного цветка — 2–5 дней. Цветки бледно-лиловые или бледно-фиолетовые, образуют верхушечные кистевидные соцветия, в соцветии располагаются двумя супротивными полумутовками, каждая из которых имеет по 2-4 цветка. При каждой мутовке имеются мелкие жесткие прицветники. Закладка и развитие цветков на побеге акропетальное, и на верхушке побега находятся самые молодые бутоны и цветки. Во время цветения растение очень декоративно.

Выявлено, что особенности формирования генеративных структур подобны другим представителям семейства Lamiaceae: формирование стенки микроспорангия центробежное, и сформированная она включает эпидерму, эндотеций, средний слой и тапетум (рисунок 7).

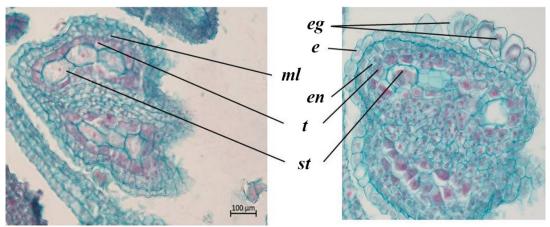


Рисунок 7 — Поперечные срезы пыльников *Orthosiphon aristatus* (Blume) Miq.: eg — эфиромасличные железки, e — эпидермис, en — эндотеций, ml — средний слой, t — тапетум, st — спорогенная ткань

(Φ ото получены при помощи микроскопа Zeiss AxioScope A. I)

Спорогенная ткань однослойная, морфологически нормальная зрелая пыльца, в основном, трехклеточная. Однако большая часть пыльцевых зерен стерильна (рисунок 8).

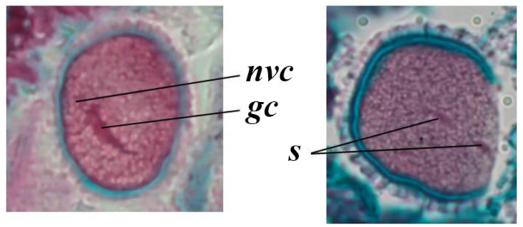


Рисунок 8 — Пыльцевые зерна Orthosiphon aristatus (Blume) Miq.: nvc — ядро вегетативной клетки, gc — генеративная клетка, sp — спермии (Фото получены при помощи микроскопа Zeiss AxioScope A. I)

Установлено, что в строении цветка ортосифона тычиночного наблюдается явление геркогамии, а также неодновременное созревание мужских и женских гамет, что значительно ограничивает образование полноценных плодов и семян.

4.3 Биология семян в контексте генеративного размножения

По мере цветения на единичных соцветиях в их нижней части могут образовываться плоды. Один плод включает в себя от 1 до 4 семян, окруженных неопадающей чашечкой. При выявлении биологических особенностей семян установлено, что они характеризуются очень низким (<10%) уровнем изменчивости морфометрических параметров. Их длина в среднем составляет 2,00 мм, ширина – 1,40 мм (таблица 10).

Таблица 10 – Морфометрические параметры семян *Orthosiphon aristatus* (Blume) Miq.

Признак	X±m	Min	Max	V, %
Длина, мм	$2,00\pm0,04$	1,85	2,26	4,78
Ширина, мм	$1,40\pm0,01$	1,32	1,47	2,71
Толщина, мм	$0,97\pm0,03$	0,85	1,20	9,32
Длина/Ширина	1,43±0,02	1,28	1,56	4,33

Для прорастания семян ортосифона тычиночного требуется порядка 14 дней. Установлено, что семена ортосифона тычиночного проявляют надземное прорастание. В ходе онтогенеза развитие проростков этого растения происходит вне семени.

При выращивании ортосифона тычиночного на Южном берегу Крыма в открытом грунте полноценные плоды завязываются чрезвычайно редко и до созревания их большая часть опадает. Весьма незначительное их количество может формироваться при среднесуточной температуре воздуха $+25^{\circ}$ C, что ограничивает размножение вида семенами.

4.4 Особенности вегетативного размножения

С целью оценки потенциальной способности вида к вегетативному размножению, было осуществлено исследование по выявлению особенностей ризогенеза стеблевых черенков ортосифона тычиночного в зависимости от варианта стимулирования корнеобразования и типа побега, выбранного для заготовки черенков (таблица 11, 12).

В результате проведенных исследований было выявлено, что Orthosiphon aristatus характеризуется высокой способностью стеблевых черенков к ризогенезу. Наблюдения

показывают, что уровень корнеобразования у черенков данного вида варьировал в пределах 86-95%.

Таблица 11 – Степень укоренения (%) стеблевых черенков Orthosiphon aristatus (Blume) Miq. (средние значения за 2019-2021 гг.)

No	Вариант стимулирования корнеобразования	Тип побега (фактор В)			
	(фактор А)	1-го порядка	2-го порядка		
1	Вода (контроль)	88,55±3,27	86,22±2,02		
2	ИМК 50 мг/л	95,33±1,64	92,00±2,46		
3	Смесь активированного угля с ИМК 50 мг/кг	91,00±1,26	87,11±1,94		
	$HCP_{A 05} = 7.82 HCP_{B 05} = 9.58$	$HCP_{AB\ 05} = 5,53$			

Установлено, что применение стимуляторов корнеобразования на черенках, а также тип побега, из которых они заготавливались, не оказывают существенного влияния на степень укоренения и особенности формирования придаточных корней.

Таблица 12 — Некоторые особенности формирования придаточных корней у стеблевых черенков *Orthosiphon aristatus* (Blume) Miq. (средние значения за 2019-2021 гг.)

Тип побега (фактор В) Вариант стимулирования корнеобразования No (фактор А) 2-го порядка 1-го порядка Количество корней 1-го порядка, шт. 1 Вода (контроль) $8,64\pm0,75$ $8,18\pm1,09$ 2 ИМК 50 мг/л $10,50\pm1,08$ $9,81\pm0,51$ 3 Смесь активированного угля с ИМК 50 мг/кг $9,12\pm0,79$ $8,94\pm1,20$ $HCP_{A 05} = 3.33 \quad HCP_{B 05} = 4.08$ $HCP_{AB\ 05} = 2,36$ Длина корней 1-го порядка, см 1 Вода (контроль) $3,07\pm0,45$ $3,21\pm0,21$ 2 ИМК 50 мг/л $4,19\pm0,23$ $3,67\pm0,34$ 3 Смесь активированного угля с ИМК 50 мг/кг $3,89\pm0,58$ $3,24\pm0,43$ $HCP_{A 05} = 1.41$ $HCP_{B 05} = 1,72$ $HCP_{AB\ 05} = 0.99$

Наблюдения показывают, что уровень корнеобразования у черенков данного вида превышает 70%. На основании этих данных ортосифон тычиночный был отнесен к категории легкоукореняемых растений.

4.5 Продуктивность и качество надземной фитомассы

В результате сравнительного анализа результатов исследования биометрических характеристик и продуктивности надземной фитомассы *Orthosiphon aristatus* в период массового цветения и плодоношения в среднем за период исследований выявляются заметные различия между условиями культивирования (таблица 13).

Установлено, что наиболее значительное различие наблюдается в продуктивности: в открытом грунте средний показатель составляет 147,3±25,0 г/раст., тогда как в защищенном грунте — всего 80,2±8,5 г/раст. Однако при этом, в обоих случаях признак

имеет высокую степень вариации. Результаты показывают, что *Orthosiphon aristatus*, несмотря на наличие схожести в некоторых биометрических признаках, показывает более высокую продуктивность и количество побегов в условиях открытого грунта. Однако защищенный грунт способствует увеличению высоты и диаметра растений, что может быть полезным при размножении вида черенками.

Таблица 13 — Биометрические особенности и продуктивность надземной фитомассы *Orthosiphon aristatus* (Blume) Miq. в период массового цветения — плодоношения в зависимости от условий культивирования (средние значения за 2019-2023 гг.)

П	Отк	Защищенный грунт						
Параметр	X±m	Min	Max	V, %	X±m	Min	Max	V, %
Толщина корневой шейки, см	0,8±0,1	0,8	0,9	6,5	0,8±0,1	0,7	0,8	5,7
Высота растений, см	55,4±3,2	44,1	64,1	13,0	62,3±3,8	47,4	68,8	13,7
Диаметр растений, см	72,0±5,8	56,4	83,7	17,9	78,2±6,2	58,3	95,7	17,8
Количество побегов, шт.	7,3±0,6	5,9	9,5	19,1	4,9±0,2	4,4	5,3	6,9
Длина побегов, см	48,3±4,0	36,0	57,0	18,7	51,8±4,1	38,1	63,3	17,7
Продуктивность надземной фитомассы, г/раст.	147,3±25,0	69,5	211,6	37,9	80,2±8,5	51,5	96,5	23,8

С целью определения качества лекарственного сырья ортосифона тычиночного, полученного в условиях Южного берега Крыма, проведена оценка соответствия надземной фитомассы требованиям сырья, а также ее биохимический анализ. В результате комплексной оценки внешних и микроскопических характеристик надземной фитомассы ортосифона тычиночного было подтверждено соответствие требованиям действующей Государственной Фармакопеи Российской Федерации к сырью (рисунок 9).

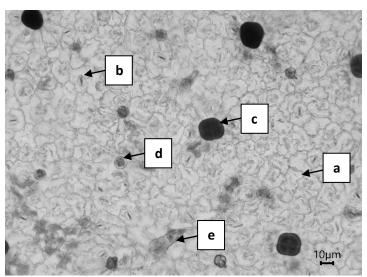


Рисунок 9 — Фрагмент нижней стороны листа *Orthosiphon aristatus* (Blume) Miq.: а — клетки эпидермиса с сильноизвилистыми стенками, b — устьица диацитного типа, с — эфирномасличная железка, d — головчатый волосок, е - простой многоклеточный волосок с бородавчатой поверхностью (2-клеточный волосок) (Фото получены при помощи микроскопа Nikon SMZ745T)

Согласно Государственной Фармакопее, качество цельного, измельченного сырья и порошка определяется количеством экстрактивных веществ, извлекаемых водой, — не менее 22% (контроль). Показатели качества исследуемых образцов сырья ортосифона тычиночного, в том числе влажность, зола общая, зола, нерастворимая в хлористоводородной кислоте (10%-ной), соответствуют требованиям действующей Государственной Фармакопеи Российской Федерации к сырью (таблица 14).

Таблица 14 — Некоторые показатели качества смеси высушенных листьев и верхушек побегов *Orthosiphon aristatus* (Blume) Miq., как лекарственного сырья

(средние значения за 2020-2021 гг.)

Показатель качества	Норма	Условия Фенологическа культивирования фаза		Результат, %
	не более 12%		бутонизация	$6,37 \pm 2,26$
Влажность		открытый грунт	цветение	$9,31 \pm 2,27$
		защищенный	бутонизация	$9,64 \pm 1,45$
		грунт	цветение	$10,09 \pm 2,02$
	не более 12%		бутонизация	$10,61 \pm 2,43$
Зола общая		открытый грунт	цветение	$10,59 \pm 0,54$
		защищенный	бутонизация	$9,20 \pm 0,80$
		грунт	цветение	$9,66 \pm 0,55$
n			бутонизация	$2,77 \pm 0,73$
Зола, нерастворимая в	не более	открытый грунт	цветение	$2,64 \pm 0,94$
хлористоводородной кислоте	5%	защищенный	бутонизация	$2,73 \pm 0,14$
RHCJIOTC		грунт	цветение	$3,05 \pm 1,02$

Содержание экстрактивных веществ, извлекаемых водой очищенной, в пересчете на абсолютно сухое сырье в исследованных образцах надземной фитомассы ортосифона тычиночного соответствовало требованиям (рисунок 10).

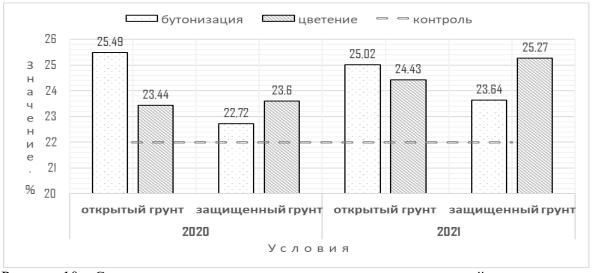


Рисунок 10 — Содержание экстрактивных веществ, извлекаемых водой, в пересчете на абсолютно сухое сырье в смеси высушенных листьев и верхушек побегов *Orthosiphon aristatus* (Blume) Miq. (2020-2021 гг.)

Глава 5 ИНТРОДУКЦИОННАЯ ОЦЕНКА И ПЕРСПЕКТИВЫ ВЫРАЩИВАНИЯ AERVA LANATA JUSS. И ORTHOSIPHON ARISTATUS (BLUME) MIQ.B КУЛЬТУРЕ

С целью определения перспективности культивирования *Aerva lanata* в условиях Южного берега Крыма проведена оценка успешности интродукции вида. По результатам

проведенных исследований установлено, что данный вид с успехом может культивироваться по типу однолетней культуры в открытом грунте и по многолетнему типу в защищенном. На основе суммирования баллов по всем изученным показателям согласно методике оценки успешности интродукции вид является перспективным (таблицы 15 и 16). А. lanata дает обильный самосев, что свидетельствует о высокой степени адаптации вида в новых условиях.

Таблица 15 – Оценка успешности интродукции *Aerva lanata* Juss. и *Orthosiphon aristatus* (Blume) Miq.

		Балл					
$N_{\underline{0}}$	Признаки	1	2	3	1	2	3
		Aerva lanata			Orthosiphon aristatus		
1	Габитус растения	-	+	-	-	+	-
2	Цветение	-	+	-	-	+	-
3	Соответствие жизненной форме	-	+	-	-	+	-
4	Семеношение	-	-	+	-	+	-
5	Способность к самосеву	-	-	+	+	-	-
1 0 1	Способность к вегетативному	+	-	-	-	-	+
	размножению						'
7	Зимостойкость	+	-	-	+	-	-
8	Засухоустойчивость	+	-	-	+	-	-
Сумма баллов		15		14			
Успешность интродукции, балл		1,9		1,8			

Особенности роста и развития *Orthosiphon aristatus* показали, что вид с успехом может культивироваться по однолетнему типу в открытом грунте с последующим переносом растений в теплицу на зимний период, при переходе среднесуточных температур через отметку ниже $+10^{\circ}$ C. На основе суммирования баллов по всем изученным показателям согласно методике оценки успешности интродукции вид является перспективным (таблицы 14 и 15).

Таблица 16 – Оценка перспективности культивирования *Aerva lanata* Juss. и *Orthosiphon aristatus* (Blume) Miq.

		Балл					
$N_{\underline{0}}$	Признаки	1	2	3	1	2	3
	_	Aerva lanata		Orthosiphon aristatus			
1	Длительность существования вида в коллекции	-	-	+	-	-	+
2	Устойчивость к вредителям и болезням	-	+	-	-	+	-
3	Биохимическая оценка по содержанию доминирующих БАВ	-	+	-	-	+	-
4	Сумма баллов	-	+(7)	-	-	+(7)	-
5	Успешность интродукции, балл	-	+(1,9)	-	-	+(1,8)	-

O. aristatus можно выращивать, используя в качестве посадочного материала черенки, так как полноценных семян он образует лишь незначительное количество. При этом способность к вегетативному размножению вида напротив является высокой.

ЗАКЛЮЧЕНИЕ

Выявление особенностей развития видов лекарственных растений тропического происхождения Aerva lanata и Orthosiphon aristatus позволило установить, что в новых условиях интродукции на Южном берегу Крыма в зоне сухого субтропического климата средиземноморского типа Aerva lanata проходит полный цикл развития в открытом грунте как однолетник, формирует полноценные семена, что свидетельствует о высокой степени адаптации вида; Orthosiphon aristatus может культивироваться по однолетнему типу в открытом грунте с последующим переносом растений в теплицу на зимний период, успешно размножается вегетативно, в защищенном грунте сохраняет жизненную форму многолетнего полукустарника. Изучаемые виды на Южном берегу Крыма являются источником лекарственного сырья высокого качества.

- 1. В условиях открытого грунта вегетационный период *Aerva lanata* составляет в среднем 102 дня, массовые всходы появляются спустя 25 дней при посеве в период со второй декады мая по первую декаду июня, для вступления в фазу массового цветения (вторая декада августа) необходима сумма активных температур (больше 10°C) 1867°C, фазу массового плодоношения 2434°C. В условиях защищенного грунта вид сохраняет свою жизненную форму травянистого многолетника.
- 2. В фазу массового цветения растения Aerva lanata достигают высоты около 60 см; характеризуется растянутым периодом цветения от 30 до 50 дней, развитие цветков проходит в акропетальном порядке. Наибольшая интенсивность раскрывания цветков приходится на первую половину дня.
- 3. Aerva lanata характеризуется непрерывной репродукцией с длительной диссеминацией. Созревание семян происходит неравномерно, начиная с нижней части колоска к верхней, по аналогии цветения. По способу распространения диаспор A. lanata относится к растениям-барохорам. Установлено, что семенная продуктивность Aerva lanata составляет 1764,8±427,1 шт. на побег. Семена обладают неглубоким физиологическим покоем, всхожесть семян достигает 56-64 % и сохраняется таковой в течение 5 лет.
- 4. В результате сравнительного анализа результатов исследования продуктивности надземной фитомассы $Aerva\ lanata$ в период массового цветения и плодоношения в среднем за период исследований наблюдаются существенные различия в продуктивности. В открытом грунте $Aerva\ lanata$ показывает среднюю продуктивность на уровне 141.8 ± 14.5 г/раст., тогда как в защищенном грунте лишь 68.3 ± 14.2 г/раст., что в 2,1 раза выше. Вариация продуктивности в открытом грунте (22,9%) ниже, чем в защищенном (46,4%), что подтверждает вывод о большей стабильности условий роста в открытом грунте.
- 5. В результате комплексной оценки внешних, микроскопических характеристик надземной фитомассы шерстистой биохимических эрвы подтверждено ее соответствие требованиям действующей Государственной фармакопеи Российской Федерации к сырью по показателям: влажность, зола общая и зола, нерастворимая в хлористоводородной кислоте. Установлено, что в открытом грунте в надземной массе растений Aerva lanata в период массового цветения – плодоношения сумма флавоноидов в пересчете на рутин и абсолютно сухое сырье составляет 1,26-1,27%, что в два раза выше, чем заявлено по требованиям Фармакопеи РФ.
- 6. В условиях открытого грунта вегетационный период *Orthosiphon aristatus* (от посадки укорененных черенков до наступления неблагоприятных условий) составляет 127 дней, для вступления в фазу массового цветения (вторая декада августа) необходима сумма активных температур (больше 10°С) 1888°С, фазу массового плодоношения 2312°С. В условиях защищенного грунта вид сохраняет свою жизненную форму полукустарника.
- 7. В среднем продолжительность цветения одного растения *O. aristatus* составляет 25—40 дней, при этом длительность цветения одного соцветия составляет 8–15

дней, а одного цветка -2-5 дней. Максимум раскрывающихся цветков отмечен в 9 утра. Их развитие происходит неравномерно, в акропетальном порядке. В условиях Южного берега Крыма полноценные плоды O. aristatus завязываются чрезвычайно редко и до созревания опадают. Незначительное количество семян может формироваться при среднесуточной температуре воздуха $+25^{\circ}$ C.

- 8. Установлено, что формирование мужских и женских генеративных структур, процессы опыления и последующего оплодотворения ортосифона проходят с нарушениями, и в конечном итоге значительно ограничивают образование полноценных плодов и семян. По основным чертам генеративные структуры подобны другим представителям семейства Lamiaceae, однако большая часть пыльцевых зерен стерильна. В строении цветка наблюдается явление геркогамии, а также неодновременное созревание мужских и женских гамет.
- 9. В результате сравнительного анализа результатов исследования биометрических характеристик и продуктивности надземной фитомассы *Orthosiphon aristatus* в условиях открытого и защищенного грунта в среднем за период исследований удалось установить, что наиболее значительное различие наблюдается в продуктивности: в открытом грунте средний показатель составляет 147,3±25,0 г/раст., тогда как в защищенном грунте всего 80,2±8,5 г/раст. Однако при этом, в обоих случаях признак имел высокую степень вариации.
- 10. Выялено, что *Orthosiphon aristatus* относится к лекоукоренямым видам: степень укоренения стеблевых черенков составляет 86-95% и не зависит от порядка побега и применения стимуляторов корнеобразования.
- 11. В результате комплексной оценки внешних, микроскопических и биохимических характеристик надземной фитомассы ортосифона тычиночного было подтверждено соответствие требованиям действующей Государственной Фармакопеи Российской Федерации к сырью по показателям: влажность, зола общая и зола, нерастворимая в хлористоводородной кислоте. Установлено, что содержание экстрактивных веществ, извлекаемых водой, в пересчете на абсолютно сухое сырье в смеси высушенных листьев и верхушек побегов ортосифона превышает данный показатель Фармакопеи РФ и составляет более 25%.
- 12. Оптимальными условиями для роста и развития Aerva lanata и Orthosiphon aristatus является температура воздуха выше 20°С с использованием обязательного искусственного орошения. При температуре воздуха ниже 20°С развитие растений замедляется, при температуре ниже 15°С приостанавливается, а при температуре ниже 5°С наблюдается гибель растений. Основными способами размножения являются: для Aerva lanata семенной, для Orthosiphon aristatus вегетативный.
- 13. Успешность интродукции Aerva lanata и Orthosiphon aristatus составляет 1,9 и 1,8 баллов соответственно. Результаты исследований морфолого-биологических особенностей Aerva lanata и Orthosiphon aristatus свидетельствуют о перспективности культивирования этих видов как лекарственных растений в условиях Южного берега Крыма и служат практической основой при разработке научно обоснованных рекомендаций по выращиванию видов в культуре.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

А. lanata — теплолюбивое растение; хорошо размножается семенами. Почвенная смесь должна состоять из равных частей почвы, песка и перегноя. Оптимальными условиями для роста и развития растений является температура воздуха в пределах 25-30 °C, температура почвенной смеси 20 °C, влажность воздуха 60-90%. Оптимальными сроками посева в защищенном грунте является І-ІІ декада апреля, в открытом грунте — ІІ-ІІІ декада мая. Семена высеваются поверхностно на глубину до 0,5 см.

При выращивании *A. lanata* через рассаду семена высевают в рядки с шириной междурядья 5-8 см, при этом всходы в рядках прореживают на расстоянии 4-5 см.

Высаживать рассаду необходимо в конце мая — начале июня, при гарантированном поливе. Растения хорошо растут и развиваются в течение вегетационного периода, достигая высоты 70–115 см.

Уборку урожая проводят в фазе массового цветения – плодоношения, в качестве сырья используется вся надземная часть растения, срезанная на высоте 3-4 см от поверхности почвы, сырье сушат под навесом.

O. aristatus — теплолюбивое растение требовательно к влаге и плодородию почвы. Заготовка черенков возможна в защищенном грунте ранней весной при температуре воздуха 18-22 °C. Для этого из побегов 1-го и 2-го порядка нарезают черенки 10-12 см длиной и удаляют листья. Черенки необходимо высаживать в субстрат на глубину 6-8 см, с интервалом 5x5 см. Степень укоренения черенков составляет 86-95%.

В условиях открытого грунта культивирование O. aristatus возможно по однолетнему типу. Пересадка растений осуществляется с прикорневым комом на глубину порядка 10 см. При переходе среднесуточных температур через отметку ниже $+10\,^{\circ}\mathrm{C}$ растения переносят в теплицу для сохранения в зимний период. При культивировании O. aristatus в защищенном грунте развитие растений происходит по многолетнему типу. Сырье можно собирать с середины июля до конца вегетации. Сушка осуществляется под навесом.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ Статьи в рецензируемых изданиях из перечня ВАК

- 1. **Коростылев, А.А.** Морфолого-биологические особенности семян *Orthosiphon aristatus* (Blume) Міq. при интродукции на Южный берег Крыма // Бюллетень Государственного Никитского ботанического сада. 2023. № 147. С. 56-62.
- 2. **Коростылев, А.А.** Морфо-анатомические и биохимические показатели качества лекарственного сырья *Orthosiphon aristatus* (Blume) Міq., культивируемого в условиях интродукции на Южном берегу Крыма / А.А. Коростылев, О.М. Шевчук, Д.А. Коновалов, Л.А. Логвиненко // Бюллетень Государственного Никитского ботанического сада. -2025. № 154. С. 122-131.

Публикации в других изданиях

- 3. **Коростылев, А.А.** Морфологические особенности плодов, семян и проростков *Aerva lanata* (L.) Juss. в условиях интродукции на Южный берег Крыма // Бюллетень Государственного Никитского ботанического сада. 2021. № 140. С. 111-119.
- 4. **Коростылев, А.А.** Orthosiphon aristatus (Blume) Міq. в коллекции Никитского ботанического сада / А.А. Коростылев, Л.А. Логвиненко, О.М. Шевчук // 90 лет от растения до лекарственного препарата: достижения и перспективы. Сборник материалов юбилейной международной научной конференции. Москва, 2021. С. 146-151.
- 5. **Коростылев, А.А.** Возрастные периоды онтогенеза *Aerva lanata* Juss. в условиях Южного берега Крыма // Ароматические и лекарственные растения: интродукция, селекция, агротехника, биологически активные вещества, влияние на человека. Тезисы международной научно-практической конференции. Никитский ботанический сад Национальный научный центр РАН. Симферополь, 2021. С. 16.
- 6. **Коростылев, А.А.** К вопросу о перспективах культивирования эрвы шерстистой в Крыму и на юге России / А.А. Коростылев, Л.А. Логвиненко, О.М. Шевчук // II Международная научная конференция "Роль метаболомики в совершенствовании биотехнологических средств производства" по направлению "Метаболомика и качество жизни". Москва, 2019. С. 294-300.
- 7. **Коростылев, А.А.** Некоторые биологические особенности семян эрвы шерстистой / А.А. Коростылев, Л.А. Логвиненко // Биология растений и садоводство: теория, инновации. -2019. № 3 (152). С. 48-55.

- 8. **Коростылев, А.А.** Перспективные лекарственные растения в коллекции Никитского ботанического сада / А.А. Коростылев, Л.А. Логвиненко // Биотехнология выращивания лекарственных и эфиромасличных культур. Материалы всероссийской научной конференции. Санкт-Петербург, 2023. С. 23-31.
- 9. **Коростылев, А.А.** Эдафические особенности *Aerva lanata* и *Orthosiphon aristatus* на Южном берегу Крыма / А.А. Коростылев, М.Л. Новицкий // «Тропические и субтропические растения открытого и защищенного грунта», посвященные 210-летию Никитского ботанического сада Национального научного центра РАН и 25-летию кактусовой оранжереи. Тезисы всероссийской научно-практической конференции. Республика Крым, Ялта, 20–24 июня 2022 года. 2022. С. 75-76
- 10. Шевченко, С.В. Особенности биологии развития *Orthosiphon aristatus* (Lamiaceae) в условиях интродукции на Южном берегу Крыма / С.В. Шевченко, **А.А. Коростылев**, О.М. Шевчук // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, № 4. С. 437-444.
- 11. Shevchuk, O.M. Features of the development of tropical crops in the conditions of dry subtropics of the Southern coast of the Crimea / O.M. Shevchuk, L.A. Logvinenko, **A.A. Korostylev** // International Scientific and Practical Conference «Methods for Synthesis of New Biologically Active Substances and Their Application in Various Industries of the World Economy 2023» (MSNBAS2023). Les Ulis, 2024. C. 03008.